[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11154))

Included in the following conference series:

Abstract

The proliferation of social media in communication and information dissemination has made it an ideal platform for spreading rumors. Automatically debunking rumors at their stage of diffusion is known as early rumor detection, which refers to dealing with sequential posts regarding disputed factual claims with certain variations and highly textual duplication over time. Thus, identifying trending rumors demands an efficient yet flexible model that is able to capture long-range dependencies among postings and produce distinct representations for the accurate early detection. However, it is a challenging task to apply conventional classification algorithms to rumor detection in earliness since they rely on hand-crafted features which require intensive manual efforts in the case of large amount of posts. This paper presents a deep attention model based on recurrent neural networks (RNNs) to selectively learn temporal representations of sequential posts for rumor identification. The proposed model delves soft-attention into the recurrence to simultaneously pool out distinct features with particular focus and produce hidden representations that capture contextual variations of relevant posts over time. Extensive experiments on real datasets collected from social media websites demonstrate that the deep attention based RNN model outperforms state-of-the-art baselines by detecting rumors more quickly and accurately than competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.dailymail.co.uk/news/article-2313652/AP-Twitter-hackers-break-news-White-House-explosions-injured-Obama.html.

  2. 2.

    www.twitter.com.

  3. 3.

    www.weibo.com.

  4. 4.

    www.snopes.com.

  5. 5.

    http://service.account.weibo.com.

  6. 6.

    https://www.tensorflow.org.

References

  1. Zimbra, D., Ghiassi, M., Lee, S.: Brand-related Twitter sentiment analysis using feature engineering and the dynamic architecture for artificial neural networks. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 1930–1938. IEEE (2016)

    Google Scholar 

  2. Zafarani, R., Liu, H.: 10 bits of surprise: detecting malicious users with minimum information. In: CIKM, pp. 423–431. ACM (2015)

    Google Scholar 

  3. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on Sina Weibo by propagation structures. In: ICDE, pp. 651–662. IEEE (2015)

    Google Scholar 

  4. Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of social context information on microblogging websites. In: CIKM, pp. 1751–1754. ACM (2015)

    Google Scholar 

  5. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunking on Twitter. In: CIKM, pp. 1867–1870. ACM (2015)

    Google Scholar 

  6. Rayana, S., Akoglu, L.: Collective opinion spam detection using active inference. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp. 630–638. SIAM (2016)

    Google Scholar 

  7. Rayana, S., Akoglu, L.: Collective opinion spam detection: bridging review networks and metadata. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 985–994. ACM (2015)

    Google Scholar 

  8. Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: early detection of rumors in social media from enquiry posts. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1395–1405. ACM (2015)

    Google Scholar 

  9. Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks. In: Proceedings of IJCAI (2016)

    Google Scholar 

  10. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on Twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM (2011)

    Google Scholar 

  11. Hu, X., Tang, J., Gao, H., Liu, H.: Social spammer detection with sentiment information. In: ICDM, pp. 180–189. IEEE (2014)

    Google Scholar 

  12. Sampson, J., Morstatter, F., Wu, L., Liu, H.: Leveraging the implicit structure within social media for emergent rumor detection. In: CIKM, pp. 2377–2382. ACM (2016)

    Google Scholar 

  13. Wu, L., Li, J., Hu, X., Liu, H.: Gleaning wisdom from the past: early detection of emerging rumors in social media. In: SDM (2016)

    Google Scholar 

  14. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention networks for document classification. In: Proceedings of NAACL-HLT, pp. 1480–1489 (2016)

    Google Scholar 

  15. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  16. Wu, L., Wang, Y., Li, X., Gao, J.: What-and-where to match: deep spatially multiplicative integration networks for person re-identification. Pattern Recognit. 76, 727–738 (2018)

    Article  Google Scholar 

  17. Wu, L., Wang, Y.: Where to focus: deep attention-based spatially recurrent bilinear networks for fine-grained visual recognition. arXiv preprint arXiv:1709.05769 (2017)

  18. Wu, L., Wang, Y., Gao, J., Li, X.: Deep adaptive feature embedding with local sample distributions for person re-identification. Pattern Recognit. 73, 275–288 (2018)

    Article  Google Scholar 

  19. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  20. Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar as a foreign language. In: Advances in Neural Information Processing Systems, pp. 2773–2781 (2015)

    Google Scholar 

  21. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention. arXiv preprint arXiv:1511.04119 (2015)

  22. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  23. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)

  24. Wu, L., Haynes, M., Smith, A., Chen, T., Li, X.: Generating life course trajectory sequences with recurrent neural networks and application to early detection of social disadvantage. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 225–242. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4_16

    Chapter  Google Scholar 

  25. Chen, W., et al.: EEG-based motion intention recognition via multi-task RNNs. In: Proceedings of the 2018 SIAM International Conference on Data Mining. SIAM (2018)

    Google Scholar 

  26. Zhang, D., Yao, L., Zhang, X., Wang, S., Chen, W., Boots, R.: EEG-based intention recognition from spatio-temporal representations via cascade and parallel convolutional recurrent neural networks. arXiv preprint arXiv:1708.06578 (2017)

  27. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

    MATH  Google Scholar 

  28. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  29. Chen, H., Yin, H., Li, X., Wang, M., Chen, W., Chen, T.: People opinion topic model: opinion based user clustering in social networks. In: WWW Companion, pp. 1353–1359. International World Wide Web Conferences Steering Committee (2017)

    Google Scholar 

  30. Yin, H., Chen, H., Sun, X., Wang, H., Wang, Y., Nguyen, Q.V.H.: SPTF: a scalable probabilistic tensor factorization model for semantic-aware behavior prediction. In: ICDM. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, T., Li, X., Yin, H., Zhang, J. (2018). Call Attention to Rumors: Deep Attention Based Recurrent Neural Networks for Early Rumor Detection. In: Ganji, M., Rashidi, L., Fung, B., Wang, C. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 11154. Springer, Cham. https://doi.org/10.1007/978-3-030-04503-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04503-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04502-9

  • Online ISBN: 978-3-030-04503-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics