[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Theoretical Foundations of Anisotropic Diffusion in Image Processing

  • Conference paper
Theoretical Foundations of Computer Vision

Part of the book series: Computing Supplement ((COMPUTING,volume 11))

Abstract

Theoretical Foundations of Anisotropic Diffusion in Image Processing. A frequent problem in low-level vision consists of eliminating noise and small-scale details from an image while still preserving or even enhancing the edge structure. Nonlinear anisotropic diffusion filtering may be one possibility to achieve these goals. The objective of the present paper is to review the author’s results on a scale-space interpretation of a class of diffusion filters which comprises also several nonlinear anisotropic models. It is demonstrated that these models—which use an adapted diffusion tensor instead of a scalar diffusivity—offer advantages over isotropic filters. Most of the restoration and scale-space properties carry over from the continuous to the discrete case. Applications are presented ranging from preprocessing of medical images and postprocessing of fluctuating numerical data to visualizing quality relevant features for the grading of wood surfaces and fabrics.

This work was supported by “Stiftung Volkswagenwerk” and “Stiftung Rheinland-Pfalz für Innovation”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations in image processing. Arch. Rational Mech. Anal. 123, 199–257 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. IL SIAM J. Numer. Anal. 29, 845–866 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bajla, I., Marušiak, M., Šrámek, M.: Anisotropic filtering of MRI data based upon image gradient histogram. In: Computer analysis of images and patterns (Chetverikov, D., Kropatsch, W. G., eds.), pp. 90–97. Berlin, Heidelberg, New York, Tokyo: Springer 1993.

    Chapter  Google Scholar 

  4. Brezis, H.: Analyse fonctionelle. Paris: Masson, 1983.

    Google Scholar 

  5. Buck, B., Macaulay, V. (eds.): Maximum entropy in action. Oxford: Clarendon 1991.

    Google Scholar 

  6. Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 182–193 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  7. Cottet, G.-H.: Diffusion approximation on neural networks and applications for image processing. In: Proc. Sixth European Conference on Mathematics in Industry (Hodnett, F., ed.), pp. 3–9. Stuttgart: Teubner 1992.

    Google Scholar 

  8. Cottet, G.-H., Germain, L.: Image processing through reaction combined with nonlinear diffusion. Math. Comp. 61, 659–673 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. Cottet, G.-H.: Neural networks: Continuous approach and applications to image processing. Technical Report No. 113, LMC—IMAG, Université Joseph Fourier, B.P. 53, 38041 Grenoble Cédex 9, France, 1994 (submitted to Proc. 2nd Europ. Conf. on Mathematics applied to Biology and Medicine, Lyon, Dec. 15–18, 1993).

    Google Scholar 

  10. Fröhlich, J., Weickert, J.: Image processing using a wavelet algorithm for nonlinear diffusion. Report No. 104, Laboratory of Technomathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, 1994.

    Google Scholar 

  11. Gerig, G., Kübler, O., Kikinis, R., Jolesz, F. A.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Medical Imaging 11, 221–232 (1992).

    Article  Google Scholar 

  12. Gonzalez, R. C., Wintz, P.: Digital image processing. Reading: Addison-Wesley 1987.

    Google Scholar 

  13. Hummel, R. A.: Representations based on zero-crossings in scale space. Proc. IEEE Computer Society Conf. on Comp. Vision and Pattern Recognition, pp. 204–209, 1986.

    Google Scholar 

  14. Koenderink, J. J.: The structure of images. Biol. Cybern. 50, 363–370 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  15. Koepfler, G., Morel, J.-M., Solimini, S.: Segmentation by minimizing a functional and the “merging” method. Preprint No. 9022, CEREMADE, Université Paris IX—Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cédex 16, France, 1990.

    Google Scholar 

  16. Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. Pattern Anal. Mach. Intell. 12, 234–254 (1990).

    Article  Google Scholar 

  17. Lukschin, A., Neunzert, H., Struckmeier, J.: Interim report of the project DPH 6473/91—Coupling of Navier-Stokes and Boltzmann regions. Internal Report, Kaiserslautern, 1993.

    Google Scholar 

  18. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. London Ser. B 207, 187–217 (1980).

    Google Scholar 

  19. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  20. Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14, 826–833 (1992).

    Article  Google Scholar 

  21. Nordström, N.: Biased anisotropic diffusion—a unified regularization and diffusion approach to edge detection. Image Vision Comput. 8, 318–327 (1990).

    Article  Google Scholar 

  22. Ottenberg, K.: Model-based extraction of geometric structure from digital images. Ph.D. thesis, Utrecht University, The Netherlands, 1993.

    Google Scholar 

  23. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).

    Article  Google Scholar 

  24. Proesmans, M., Van Gool, L., Pauwels, E., Oosterlinck, A.: Determination of optical flow and its discontinuities using non-linear diffusion. In: Computer Vision—ECCV’ 94 (Eklundh, J.-O., ed.), pp. 295–304. Berlin, Heidelberg, New York, Tokyo: Springer 1994 (Lecture Notes in Computer Science, Vol. 801).

    Google Scholar 

  25. Protter, M. H., Weinberger, H. F.: Maximum principles in differential equations. Englewood Cliffs: Prentice-Hall 1978.

    Google Scholar 

  26. Rambaux, I., Garçon, P.: Nonlinear anisotropic diffusion filtering of 3D images. Project Work, Département Génie Mathématique, INSA de Rouen and Laboratory of Technomathematics, University of Kaiserslautern, 1994.

    Google Scholar 

  27. Saint-Marc, P., Chen, J. S., Medioni, G.: Adaptive smoothing: a general tool for early vision. IEEE Trans. Pattern Anal. Mach. Intell. 13, 514–529 (1990).

    Article  Google Scholar 

  28. Sapiro, G., Tannenbaum, A.: Affine invariant scale-space. Int. J. Comput. Vision 11, 25–44 (1993).

    Article  Google Scholar 

  29. Schnörr, C.: Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals. J. Math. Imag. Vision 4, 189–198 (1994).

    Article  Google Scholar 

  30. Schnörr, C.: Bewegungssegmentation von Bildfolgen durch die Minimierung konvexer nichtquadratischer Funktionale. In: Tagungsband Mustererkennung 1994 (Kropatsch, W. G., Bischof, H., eds.), pp. 178–185. Informatik Xpress 5, Wien, 1994.

    Google Scholar 

  31. Weickert, J.: Zwischenbericht zum Projekt “Nichtlineare Diffusionsfilter”. Bericht über die wissenschaftliche Tätigkeit Januar 1991-Dezember 1991, Center for Applied Mathematics, Darmstadt-Kaiserslautern, pp. 133–142, 1992.

    Google Scholar 

  32. Weickert, J.: Abschlußbericht zum Projekt “Nichtlineare Diffusionsfilter”. Abschlußbericht und Bericht über die wissenschaftliche Tätigkeit Januar 1992-Dezember 1993, Center for Applied Mathematics, Darmstadt-Kaiserslautern, pp. 191–209, 1994.

    Google Scholar 

  33. Weickert, J.: Anisotropic diffusion filters for image processing based quality control. In: Proc. Seventh European Conf. on Mathematics in Industry (Fasano, A., Primicerio, M., eds.), pp. 355–362. Stuttgart: Teubner 1994.

    Google Scholar 

  34. Weickert, J.: Scale-space properties of nonlinear diffusion filtering with a diffusion tensor. Report No. 110, Laboratory of Technomathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, 1994 (submitted).

    Google Scholar 

  35. Weickert, J.: Anisotropic diffusion in image processing. Ph.D. thesis, Kaiserslautern, 1995 (to be filed).

    Google Scholar 

  36. Whitaker, R. T., Pizer, S. M.: A multi-scale approach to nonuniform diffusion. CVGIP: Image Understanding 57, 99–110 (1993).

    Article  Google Scholar 

  37. Witkin, A. P.: Scale-space filtering. Proc. Eighth Int. Joint Conf. on Artificial Intell., Karlsruhe, pp. 1019–1022, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this paper

Cite this paper

Weickert, J. (1996). Theoretical Foundations of Anisotropic Diffusion in Image Processing. In: Kropatsch, W., Klette, R., Solina, F., Albrecht, R. (eds) Theoretical Foundations of Computer Vision. Computing Supplement, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6586-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6586-7_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82730-7

  • Online ISBN: 978-3-7091-6586-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics