Abstract
Theoretical Foundations of Anisotropic Diffusion in Image Processing. A frequent problem in low-level vision consists of eliminating noise and small-scale details from an image while still preserving or even enhancing the edge structure. Nonlinear anisotropic diffusion filtering may be one possibility to achieve these goals. The objective of the present paper is to review the author’s results on a scale-space interpretation of a class of diffusion filters which comprises also several nonlinear anisotropic models. It is demonstrated that these models—which use an adapted diffusion tensor instead of a scalar diffusivity—offer advantages over isotropic filters. Most of the restoration and scale-space properties carry over from the continuous to the discrete case. Applications are presented ranging from preprocessing of medical images and postprocessing of fluctuating numerical data to visualizing quality relevant features for the grading of wood surfaces and fabrics.
This work was supported by “Stiftung Volkswagenwerk” and “Stiftung Rheinland-Pfalz für Innovation”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, L., Guichard, F., Lions, P.-L., Morel, J.-M.: Axioms and fundamental equations in image processing. Arch. Rational Mech. Anal. 123, 199–257 (1993).
Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. IL SIAM J. Numer. Anal. 29, 845–866 (1992).
Bajla, I., Marušiak, M., Šrámek, M.: Anisotropic filtering of MRI data based upon image gradient histogram. In: Computer analysis of images and patterns (Chetverikov, D., Kropatsch, W. G., eds.), pp. 90–97. Berlin, Heidelberg, New York, Tokyo: Springer 1993.
Brezis, H.: Analyse fonctionelle. Paris: Masson, 1983.
Buck, B., Macaulay, V. (eds.): Maximum entropy in action. Oxford: Clarendon 1991.
Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 182–193 (1992).
Cottet, G.-H.: Diffusion approximation on neural networks and applications for image processing. In: Proc. Sixth European Conference on Mathematics in Industry (Hodnett, F., ed.), pp. 3–9. Stuttgart: Teubner 1992.
Cottet, G.-H., Germain, L.: Image processing through reaction combined with nonlinear diffusion. Math. Comp. 61, 659–673 (1993).
Cottet, G.-H.: Neural networks: Continuous approach and applications to image processing. Technical Report No. 113, LMC—IMAG, Université Joseph Fourier, B.P. 53, 38041 Grenoble Cédex 9, France, 1994 (submitted to Proc. 2nd Europ. Conf. on Mathematics applied to Biology and Medicine, Lyon, Dec. 15–18, 1993).
Fröhlich, J., Weickert, J.: Image processing using a wavelet algorithm for nonlinear diffusion. Report No. 104, Laboratory of Technomathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, 1994.
Gerig, G., Kübler, O., Kikinis, R., Jolesz, F. A.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Medical Imaging 11, 221–232 (1992).
Gonzalez, R. C., Wintz, P.: Digital image processing. Reading: Addison-Wesley 1987.
Hummel, R. A.: Representations based on zero-crossings in scale space. Proc. IEEE Computer Society Conf. on Comp. Vision and Pattern Recognition, pp. 204–209, 1986.
Koenderink, J. J.: The structure of images. Biol. Cybern. 50, 363–370 (1984).
Koepfler, G., Morel, J.-M., Solimini, S.: Segmentation by minimizing a functional and the “merging” method. Preprint No. 9022, CEREMADE, Université Paris IX—Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cédex 16, France, 1990.
Lindeberg, T.: Scale-space for discrete signals. IEEE Trans. Pattern Anal. Mach. Intell. 12, 234–254 (1990).
Lukschin, A., Neunzert, H., Struckmeier, J.: Interim report of the project DPH 6473/91—Coupling of Navier-Stokes and Boltzmann regions. Internal Report, Kaiserslautern, 1993.
Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. London Ser. B 207, 187–217 (1980).
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989).
Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14, 826–833 (1992).
Nordström, N.: Biased anisotropic diffusion—a unified regularization and diffusion approach to edge detection. Image Vision Comput. 8, 318–327 (1990).
Ottenberg, K.: Model-based extraction of geometric structure from digital images. Ph.D. thesis, Utrecht University, The Netherlands, 1993.
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990).
Proesmans, M., Van Gool, L., Pauwels, E., Oosterlinck, A.: Determination of optical flow and its discontinuities using non-linear diffusion. In: Computer Vision—ECCV’ 94 (Eklundh, J.-O., ed.), pp. 295–304. Berlin, Heidelberg, New York, Tokyo: Springer 1994 (Lecture Notes in Computer Science, Vol. 801).
Protter, M. H., Weinberger, H. F.: Maximum principles in differential equations. Englewood Cliffs: Prentice-Hall 1978.
Rambaux, I., Garçon, P.: Nonlinear anisotropic diffusion filtering of 3D images. Project Work, Département Génie Mathématique, INSA de Rouen and Laboratory of Technomathematics, University of Kaiserslautern, 1994.
Saint-Marc, P., Chen, J. S., Medioni, G.: Adaptive smoothing: a general tool for early vision. IEEE Trans. Pattern Anal. Mach. Intell. 13, 514–529 (1990).
Sapiro, G., Tannenbaum, A.: Affine invariant scale-space. Int. J. Comput. Vision 11, 25–44 (1993).
Schnörr, C.: Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals. J. Math. Imag. Vision 4, 189–198 (1994).
Schnörr, C.: Bewegungssegmentation von Bildfolgen durch die Minimierung konvexer nichtquadratischer Funktionale. In: Tagungsband Mustererkennung 1994 (Kropatsch, W. G., Bischof, H., eds.), pp. 178–185. Informatik Xpress 5, Wien, 1994.
Weickert, J.: Zwischenbericht zum Projekt “Nichtlineare Diffusionsfilter”. Bericht über die wissenschaftliche Tätigkeit Januar 1991-Dezember 1991, Center for Applied Mathematics, Darmstadt-Kaiserslautern, pp. 133–142, 1992.
Weickert, J.: Abschlußbericht zum Projekt “Nichtlineare Diffusionsfilter”. Abschlußbericht und Bericht über die wissenschaftliche Tätigkeit Januar 1992-Dezember 1993, Center for Applied Mathematics, Darmstadt-Kaiserslautern, pp. 191–209, 1994.
Weickert, J.: Anisotropic diffusion filters for image processing based quality control. In: Proc. Seventh European Conf. on Mathematics in Industry (Fasano, A., Primicerio, M., eds.), pp. 355–362. Stuttgart: Teubner 1994.
Weickert, J.: Scale-space properties of nonlinear diffusion filtering with a diffusion tensor. Report No. 110, Laboratory of Technomathematics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, 1994 (submitted).
Weickert, J.: Anisotropic diffusion in image processing. Ph.D. thesis, Kaiserslautern, 1995 (to be filed).
Whitaker, R. T., Pizer, S. M.: A multi-scale approach to nonuniform diffusion. CVGIP: Image Understanding 57, 99–110 (1993).
Witkin, A. P.: Scale-space filtering. Proc. Eighth Int. Joint Conf. on Artificial Intell., Karlsruhe, pp. 1019–1022, 1983.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1996 Springer-Verlag Wien
About this paper
Cite this paper
Weickert, J. (1996). Theoretical Foundations of Anisotropic Diffusion in Image Processing. In: Kropatsch, W., Klette, R., Solina, F., Albrecht, R. (eds) Theoretical Foundations of Computer Vision. Computing Supplement, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6586-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-7091-6586-7_13
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-82730-7
Online ISBN: 978-3-7091-6586-7
eBook Packages: Springer Book Archive