Abstract
The extracellular matrix (ECM) of the brain has important roles in regulating synaptic function and plasticity. A juvenile ECM supports the wiring of neuronal networks, synaptogenesis, and synaptic maturation. The closure of critical periods for experience-dependent shaping of neuronal circuits coincides with the implementation of a mature form of ECM that is characterized by highly elaborate hyaluronan-based structures, the perineuronal nets (PNN), and PNN-like perisynaptic ECM specializations. In this chapter, we will focus on some recently reported aspects of ECM functions in brain plasticity. These include (a) the discovery that the ECM can act as a passive diffusion barrier for cell surface molecules including neurotransmitter receptors and in this way compartmentalize cell surfaces, (b) the specific functions of ECM components in actively regulating synaptic plasticity and homeostasis, and (c) the shaping processes of the ECM by extracellular proteases and in turn the activation particular signaling pathways.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alpar, A., Gartner, U., Hartig, W., & Bruckner, G. (2006). Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Research, 1120, 13–22.
Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends in Neurosciences, 22, 208–215.
Bandtlow, C. E., & Zimmermann, D. R. (2000). Proteoglycans in the developing brain: New conceptual insights for old proteins. Physiological Reviews, 80, 1267–1290.
Berardi, N., Pizzorusso, T., Ratto, G. M., & Maffei, L. (2003). Molecular basis of plasticity in the visual cortex. Trends in Neurosciences, 26, 369–378.
Bolliger, M. F., Zurlinden, A., Luscher, D., Butikofer, L., Shakhova, O., Francolini, M., Kozlov, S. V., Cinelli, P., Stephan, A., Kistler, A. D., Rulicke, T., Pelczar, P., Ledermann, B., Fumagalli, G., Gloor, S. M., Kunz, B., & Sonderegger, P. (2010). Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction. Journal of Cell Science, 123, 3944–3955.
Borgdorff, A. J., & Choquet, D. (2002). Regulation of AMPA receptor lateral movements. Nature, 417, 649–653.
Brakebusch, C., Seidenbecher, C. I., Asztely, F., Rauch, U., Matthies, H., Meyer, H., Krug, M., Bockers, T. M., Zhou, X., Kreutz, M. R., Montag, D., Gundelfinger, E. D., & Fassler, R. (2002). Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Molecular and Cellular Biology, 22, 7417–7427.
Bruckner, G., Grosche, J., Schmidt, S., Hartig, W., Margolis, R. U., Delpech, B., Seidenbecher, C. I., Czaniera, R., & Schachner, M. (2000). Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. The Journal of Comparative Neurology, 428, 616–629.
Bukalo, O., Schachner, M., & Dityatev, A. (2001). Modification of extracellular matrix by enzymatic removal of chondroitin sulfate and by lack of tenascin-R differentially affects several forms of synaptic plasticity in the hippocampus. Neuroscience, 104, 359–369.
Bukalo, O., Schachner, M., & Dityatev, A. (2007). Hippocampal metaplasticity induced by deficiency in the extracellular matrix glycoprotein tenascin-R. Journal of Neuroscience, 27, 6019–6028.
Campo, C. G., Sinagra, M., Verrier, D., Manzoni, O. J., & Chavis, P. (2009). Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis. PloS One, 4, e5505.
Carulli, D., Pizzorusso, T., Kwok, J. C., Putignano, E., Poli, A., Forostyak, S., Andrews, M. R., Deepa, S. S., Glant, T. T., & Fawcett, J. W. (2010). Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain, 133, 2331–2347.
Carulli, D., Rhodes, K. E., & Fawcett, J. W. (2007). Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. The Journal of Comparative Neurology, 501, 83–94.
Celio, M. R., & Blumcke, I. (1994). Perineuronal nets – A specialized form of extracellular matrix in the adult nervous system. Brain Research: Brain Research Reviews, 19, 128–145.
Celio, M. R., Spreafico, R., De Biasi, S., & Vitellaro-Zuccarello, L. (1998). Perineuronal nets: Past and present. Trends in Neurosciences, 21, 510–515.
Chai, X., Forster, E., Zhao, S., Bock, H. H., & Frotscher, M. (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. Journal of Neuroscience, 29, 288–299.
Chan, C. S., Weeber, E. J., Zong, L., Fuchs, E., Sweatt, J. D., & Davis, R. L. (2006). Beta1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. Journal of Neuroscience, 26, 223–232.
Chang, M. C., Park, J. M., Pelkey, K. A., Grabenstatter, H. L., Xu, D., Linden, D. J., Sutula, T. P., McBain, C. J., & Worley, P. F. (2010). Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nature Neuroscience, 13, 1090–1097.
Charrier, C., Machado, P., Tweedie-Cullen, R. Y., Rutishauser, D., Mansuy, I. M., & Triller, A. (2010). A crosstalk between beta1 and beta3 integrins controls glycine receptor and gephyrin trafficking at synapses. Nature Neuroscience, 13, 1388–1395.
Chavis, P., & Westbrook, G. (2001). Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature, 411, 317–321.
Choquet, D., & Triller, A. (2003). The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Reviews Neuroscience, 4, 251–265.
Christopherson, K. S., Ullian, E. M., Stokes, C. C., Mullowney, C. E., Hell, J. W., Agah, A., Lawler, J., Mosher, D. F., Bornstein, P., & Barres, B. A. (2005). Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 120, 421–433.
Cingolani, L. A., Thalhammer, A., Yu, L. M., Catalano, M., Ramos, T., Colicos, M. A., & Goda, Y. (2008). Activity-dependent regulation of synaptic AMPA receptor composition and abundance by beta3 integrins. Neuron, 58, 749–762.
Deepa, S. S., Carulli, D., Galtrey, C., Rhodes, K., Fukuda, J., Mikami, T., Sugahara, K., & Fawcett, J. W. (2006). Composition of perineuronal net extracellular matrix in rat brain: A different disaccharide composition for the net-associated proteoglycans. Journal of Biological Chemistry, 281, 17789–17800.
Devanathan, V., Jakovcevski, I., Santuccione, A., Li, S., Lee, H. J., Peles, E., Leshchyns’ka, I., Sytnyk, V., & Schachner, M. (2010). Cellular form of prion protein inhibits reelin-mediated shedding of Caspr from the neuronal cell surface to potentiate Caspr-mediated inhibition of neurite outgrowth. Journal of Neuroscience, 30, 9292–9305.
Dityatev, A., Bruckner, G., Dityateva, G., Grosche, J., Kleene, R., & Schachner, M. (2007). Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Developmental Neurobiology, 67, 570–588.
Dityatev, A., & Fellin, T. (2008). Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biology, 4, 235–247.
Dityatev, A., Frischknecht, R., & Seidenbecher, C. I. (2006). Extracellular matrix and synaptic functions. Results and Problems in Cell Differentiation, 43, 69–97.
Dityatev, A., & Schachner, M. (2003). Extracellular matrix molecules and synaptic plasticity. Nature Reviews Neuroscience, 4, 456–468.
Dityatev, A., Schachner, M., & Sonderegger, P. (2010a). The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nature Reviews Neuroscience, 11, 735–746.
Dityatev, A., Seidenbecher, C. I., & Schachner, M. (2010b). Compartmentalization from the outside: The extracellular matrix and functional microdomains in the brain. Trends in Neurosciences, 33, 503–512.
Eroglu, C. (2009). The role of astrocyte-secreted matricellular proteins in central nervous system development and function. Journal of Cell Communication Signaling, 3, 167–176.
Eroglu, C., Allen, N. J., Susman, M. W., O’Rourke, N. A., Park, C. Y., Ozkan, E., Chakraborty, C., Mulinyawe, S. B., Annis, D. S., Huberman, A. D., Green, E. M., Lawler, J., Dolmetsch, R., Garcia, K. C., Smith, S. J., Luo, Z. D., Rosenthal, A., Mosher, D. F., & Barres, B. A. (2009). Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 139, 380–392.
Ethell, I. M., & Ethell, D. W. (2007). Matrix metalloproteinases in brain development and remodeling: Synaptic functions and targets. Journal of Neuroscience Research, 85, 2813–2823.
Faissner, A., Pyka, M., Geissler, M., Sobik, T., Frischknecht, R., Gundelfinger, E. D., & Seidenbecher, C. (2010). Contributions of astrocytes to synapse formation and maturation – Potential functions of the perisynaptic extracellular matrix. Brain Research Reviews, 63, 26–38.
Fawcett, J. (2009a). Molecular control of brain plasticity and repair. Progress in Brain Research, 175, 501–509.
Fawcett, J. W. (2009b). Recovery from spinal cord injury: Regeneration, plasticity and rehabilitation. Brain, 132, 1417–1418.
Foscarin, S., Ponchione, D., Pajaj, E., Leto, K., Gawlak, M., Wilczynski, G. M., Rossi, F., & Carulli, D. (2011). Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PloS One, 6, e16666.
Frischknecht, R., Fejtova, A., Viesti, M., Stephan, A., & Sonderegger, P. (2008). Activity-induced synaptic capture and exocytosis of the neuronal serine protease neurotrypsin. Journal of Neuroscience, 28, 1568–1579.
Frischknecht, R., Heine, M., Perrais, D., Seidenbecher, C. I., Choquet, D., & Gundelfinger, E. D. (2009). Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nature Neuroscience, 12, 897–904.
Frischknecht, R., & Seidenbecher, C. I. (2008). The crosstalk of hyaluronan-based extracellular matrix and synapses. Neuron Glia Biology, 4, 249–257.
Frotscher, M. (2010). Role for reelin in stabilizing cortical architecture. Trends in Neurosciences, 33, 407–414.
Galtrey, C. M., & Fawcett, J. W. (2007). The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Research Reviews, 54, 1–18.
Giamanco, K. A., Morawski, M., & Matthews, R. T. (2010). Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience, 170, 1314–1327.
Gogolla, N., Caroni, P., Luthi, A., & Herry, C. (2009). Perineuronal nets protect fear memories from erasure. Science, 325, 1258–1261.
Groc, L., Choquet, D., Stephenson, F. A., Verrier, D., Manzoni, O. J., & Chavis, P. (2007). NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein reelin. Journal of Neuroscience, 27, 10165–10175.
Hartig, W., Derouiche, A., Welt, K., Brauer, K., Grosche, J., Mader, M., Reichenbach, A., & Bruckner, G. (1999). Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Research, 842, 15–29.
Haydon, P. G. (2001). GLIA: Listening and talking to the synapse. Nature Reviews Neuroscience, 2, 185–193.
Heine, M., Groc, L., Frischknecht, R., Beique, J. C., Lounis, B., Rumbaugh, G., Huganir, R. L., Cognet, L., & Choquet, D. (2008). Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science, 320, 201–205.
Herz, J., & Chen, Y. (2006). Reelin, lipoprotein receptors and synaptic plasticity. Nature Reviews Neuroscience, 7, 850–859.
John, N., Krugel, H., Frischknecht, R., Smalla, K. H., Schultz, C., Kreutz, M. R., Gundelfinger, E. D., & Seidenbecher, C. I. (2006). Brevican-containing perineuronal nets of extracellular matrix in dissociated hippocampal primary cultures. Molecular and Cellular Neuroscience, 31, 774–784.
Kochlamazashvili, G., Henneberger, C., Bukalo, O., Dvoretskova, E., Senkov, O., Lievens, P. M., Westenbroek, R., Engel, A. K., Catterall, W. A., Rusakov, D. A., Schachner, M., & Dityatev, A. (2010). The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels. Neuron, 67, 116–128.
Kohno, T., & Hattori, M. (2010). Re-evaluation of protease activity of reelin. Biological and Pharmaceutical Bulletin, 33, 1047–1049.
Kusumi, A., Ike, H., Nakada, C., Murase, K., & Fujiwara, T. (2005). Single-molecule tracking of membrane molecules: Plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Seminars in Immunology, 17, 3–21.
Kusumi, A., Sako, Y., & Yamamoto, M. (1993). Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophysical Journal, 65, 2021–2040.
Kwok, J. C., Carulli, D., & Fawcett, J. W. (2010). In vitro modeling of perineuronal nets: Hyaluronan synthase and link protein are necessary for their formation and integrity. Journal of Neurochemistry, 114, 1447–1459.
Li, K. W., Hornshaw, M. P., Van Der Schors, R. C., Watson, R., Tate, S., Casetta, B., Jimenez, C. R., Gouwenberg, Y., Gundelfinger, E. D., Smalla, K. H., & Smit, A. B. (2004). Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. Journal of Biological Chemistry, 279, 987–1002.
Mataga, N., Mizuguchi, Y., & Hensch, T. K. (2004). Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron, 44, 1031–1041.
Mataga, N., Nagai, N., & Hensch, T. K. (2002). Permissive proteolytic activity for visual cortical plasticity. Proceedings of the National Academy of Sciences of the United States of America, 99, 7717–7721.
Matsumoto-Miyai, K., Sokolowska, E., Zurlinden, A., Gee, C. E., Luscher, D., Hettwer, S., Wolfel, J., Ladner, A. P., Ster, J., Gerber, U., Rulicke, T., Kunz, B., & Sonderegger, P. (2009). Coincident pre- and postsynaptic activation induces dendritic filopodia via neurotrypsin-dependent agrin cleavage. Cell, 136, 1161–1171.
Matthews, R. T., Kelly, G. M., Zerillo, C. A., Gray, G., Tiemeyer, M., & Hockfield, S. (2002). Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. Journal of Neuroscience, 22, 7536–7547.
Michaluk, P., Kolodziej, L., Mioduszewska, B., Wilczynski, G. M., Dzwonek, J., Jaworski, J., Gorecki, D. C., Ottersen, O. P., & Kaczmarek, L. (2007). Beta-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity. Journal of Biological Chemistry, 282, 16036–16041.
Michaluk, P., Mikasova, L., Groc, L., Frischknecht, R., Choquet, D., & Kaczmarek, L. (2009). Matrix metalloproteinase-9 controls NMDA receptor surface diffusion through integrin beta1 signaling. Journal of Neuroscience, 29, 6007–6012.
Milev, P., Maurel, P., Chiba, A., Mevissen, M., Popp, S., Yamaguchi, Y., Margolis, R. K., & Margolis, R. U. (1998). Differential regulation of expression of hyaluronan-binding proteoglycans in developing brain: Aggrecan, versican, neurocan, and brevican. Biochemical and Biophysical Research Communications, 247, 207–212.
Miyata, S., Nishimura, Y., Hayashi, N., & Oohira, A. (2005). Construction of perineuronal net-like structure by cortical neurons in culture. Neuroscience, 136, 95–104.
Molinari, F., Rio, M., Meskenaite, V., Encha-Razavi, F., Auge, J., Bacq, D., Briault, S., Vekemans, M., Munnich, A., Attie-Bitach, T., Sonderegger, P., & Colleaux, L. (2002). Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science, 298, 1779–1781.
Nagy, V., Bozdagi, O., Matynia, A., Balcerzyk, M., Okulski, P., Dzwonek, J., Costa, R. M., Silva, A. J., Kaczmarek, L., & Huntley, G. W. (2006). Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. Journal of Neuroscience, 26, 1923–1934.
Newpher, T. M., & Ehlers, M. D. (2008). Glutamate receptor dynamics in dendritic microdomains. Neuron, 58, 472–497.
O’Brien, R. J., Xu, D., Petralia, R. S., Steward, O., Huganir, R. L., & Worley, P. (1999). Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron, 23, 309–323.
Oray, S., Majewska, A., & Sur, M. (2004). Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron, 44, 1021–1030.
Petrini, E. M., Lu, J., Cognet, L., Lounis, B., Ehlers, M. D., & Choquet, D. (2009). Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron, 63, 92–105.
Pizzorusso, T. (2009). Neuroscience. Erasing fear memories. Science, 325, 1214–1215.
Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J. W., & Maffei, L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science, 298, 1248–1251.
Pizzorusso, T., Medini, P., Landi, S., Baldini, S., Berardi, N., & Maffei, L. (2006). Structural and functional recovery from early monocular deprivation in adult rats. Proceedings of the National Academy of Sciences of the United States of America, 103, 8517–8522.
Pozo, K., & Goda, Y. (2010). Unraveling mechanisms of homeostatic synaptic plasticity. Neuron, 66, 337–351.
Rauch, U. (2004). Extracellular matrix components associated with remodeling processes in brain. Cellular and Molecular Life Sciences, 61, 2031–2045.
Reif, R., Sales, S., Dreier, B., Luscher, D., Wolfel, J., Gisler, C., Baici, A., Kunz, B., & Sonderegger, P. (2008). Purification and enzymological characterization of murine neurotrypsin. Protein Expression and Purification, 61, 13–21.
Reif, R., Sales, S., Hettwer, S., Dreier, B., Gisler, C., Wolfel, J., Luscher, D., Zurlinden, A., Stephan, A., Ahmed, S., Baici, A., Ledermann, B., Kunz, B., & Sonderegger, P. (2007). Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. The FASEB Journal, 21, 3468–3478.
Rogers, J. T., & Weeber, E. J. (2008). Reelin and apoE actions on signal transduction, synaptic function and memory formation. Neuron Glia Biology, 4, 259–270.
Sanes, J. R., & Lichtman, J. W. (2001). Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nature Reviews Neuroscience, 2, 791–805.
Seidenbecher, C., Richter, K., & Gundelfinger, E. D. (1997). Brevican, a conditional proteoglycan from rat brain: Characterization of secreted and GPI-anchored isoforms. In A. W. Teelken & J. Korf (Eds.), Neurochemistry (pp. 901–904). New York: Plenum Press.
Seidenbecher, C. I., Richter, K., Rauch, U., Fassler, R., Garner, C. C., & Gundelfinger, E. D. (1995). Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms. Journal of Biological Chemistry, 270, 27206–27212.
Seidenbecher, C. I., Smalla, K. H., Fischer, N., Gundelfinger, E. D., & Kreutz, M. R. (2002). Brevican isoforms associate with neural membranes. Journal of Neurochemistry, 83, 738–746.
Sia, G. M., Beique, J. C., Rumbaugh, G., Cho, R., Worley, P. F., & Huganir, R. L. (2007). Interaction of the N-terminal domain of the AMPA receptor GluR4 subunit with the neuronal pentraxin NP1 mediates GluR4 synaptic recruitment. Neuron, 55, 87–102.
Sinagra, M., Verrier, D., Frankova, D., Korwek, K. M., Blahos, J., Weeber, E. J., Manzoni, O. J., & Chavis, P. (2005). Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. Journal of Neuroscience, 25, 6127–6136.
Slezak, M., & Pfrieger, F. W. (2003). New roles for astrocytes: Regulation of CNS synaptogenesis. Trends in Neurosciences, 26, 531–535.
Sobolevsky, A. I., Rosconi, M. P., & Gouaux, E. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 462, 745–756.
Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459, 698–702.
Staubli, U., Chun, D., & Lynch, G. (1998). Time-dependent reversal of long-term potentiation by an integrin antagonist. Journal of Neuroscience, 18, 3460–3469.
Steinmetz, C. C., & Turrigiano, G. G. (2010). Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. Journal of Neuroscience, 30, 14685–14690.
Szklarczyk, A., Lapinska, J., Rylski, M., McKay, R. D., & Kaczmarek, L. (2002). Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. Journal of Neuroscience, 22, 920–930.
Tidow, H., Mattle, D., & Nissen, P. (2011). Structural and biophysical characterisation of agrin laminin G3 domain constructs. Protein Engineering, Design & Selection, 24, 219–224.
Triller, A., & Choquet, D. (2008). New concepts in synaptic biology derived from single-molecule imaging. Neuron, 59, 359–374.
Tsui, C. C., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Barnes, C., & Worley, P. F. (1996). Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. Journal of Neuroscience, 16, 2463–2478.
VanSaun, M., Herrera, A. A., & Werle, M. J. (2003). Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. Journal of Neurocytology, 32, 1129–1142.
Wang, X. B., Bozdagi, O., Nikitczuk, J. S., Zhai, Z. W., Zhou, Q., & Huntley, G. W. (2008). Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proceedings of the National Academy of Sciences of the United States of America, 105, 19520–19525.
Wegner, F., Hartig, W., Bringmann, A., Grosche, J., Wohlfarth, K., Zuschratter, W., & Bruckner, G. (2003). Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Experimental Neurology, 184, 705–714.
Werle, M. J., & VanSaun, M. (2003). Activity dependent removal of agrin from synaptic basal lamina by matrix metalloproteinase 3. Journal of Neurocytology, 32, 905–913.
Wiesel, T. N., & Hubel, D. H. (1963). Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. Journal of Neurophysiology, 26, 978–993.
Xu, D., Hopf, C., Reddy, R., Cho, R. W., Guo, L., Lanahan, A., Petralia, R. S., Wenthold, R. J., O’Brien, R. J., & Worley, P. (2003). Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron, 39, 513–528.
Xu, J., Xiao, N., & Xia, J. (2010). Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nature Neuroscience, 13, 22–24.
Yamada, H., Fredette, B., Shitara, K., Hagihara, K., Miura, R., Ranscht, B., Stallcup, W. B., & Yamaguchi, Y. (1997). The brain chondroitin sulfate proteoglycan brevican associates with astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons. Journal of Neuroscience, 17, 7784–7795.
Yamaguchi, Y. (2000). Lecticans: Organizers of the brain extracellular matrix. Cellular and Molecular Life Sciences, 57, 276–289.
Zhou, X. H., Brakebusch, C., Matthies, H. et al. (2001). Neurocan is dispensable for brain development. Mol Cell Biol, 21, 5970–5978.
Zimmermann, D. R., & Dours-Zimmermann, M. T. (2008). Extracellular matrix of the central nervous system: From neglect to challenge. Histochemistry and Cell Biology, 130, 635–653.
Zuber, B., Nikonenko, I., Klauser, P., Muller, D., & Dubochet, J. (2005). The mammalian central nervous synaptic cleft contains a high density of periodically organized complexes. Proceedings of the National Academy of Sciences of the United States of America, 102, 19192–19197.
Acknowledgments
Work in the authors’ laboratory was supported by the Deutsche Forschungsgemeinschaft (GU 230/5-3) and the German Federal Minster for Education and Science BMBF via EraNET NEURON (Moddifsyn).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag/WIen
About this chapter
Cite this chapter
Frischknecht, R., Gundelfinger, E.D. (2012). The Brain’s Extracellular Matrix and Its Role in Synaptic Plasticity. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-7091-0932-8_7
Published:
Publisher Name: Springer, Vienna
Print ISBN: 978-3-7091-0931-1
Online ISBN: 978-3-7091-0932-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)