[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Power of Two Choices in Distributed Voting

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

Distributed voting is a fundamental topic in distributed computing. In pull voting, in each step every vertex chooses a neighbour uniformly at random, and adopts its opinion. The voting is completed when all vertices hold the same opinion. On many graph classes including regular graphs, pull voting requires Ω(n) expected steps to complete, even if initially there are only two distinct opinions.

In this paper we consider a related process which we call two-sample voting: every vertex chooses two random neighbours in each step. If the opinions of these neighbours coincide, then the vertex revises its opinion according to the chosen sample. Otherwise, it keeps its own opinion. We consider the performance of this process in the case where two different opinions reside on vertices of some (arbitrary) sets A and B, respectively. Here, |A| + |B| = n is the number of vertices of the graph.

We show that there is a constant K such that if the initial imbalance between the two opinions is \(\nu_0 = (|A| -|B|)/n \ge K\sqrt{(1/d) + (d/n)}\), then with high probability two sample voting completes in a random d regular graph in O(logn) steps and the initial majority opinion wins. We also show the same performance for any regular graph, if ν 0 ≥  2, where λ 2 is the second largest eigenvalue of the transition matrix. In the graphs we consider, standard pull voting requires Ω(n) steps, and the minority can still win with probability |B|/n.

The full version of this paper is available at arxiv.org/abs/1404.7479. This work was partially supported by EPSRC grant EP/J006300/1, “Random Walks on Computer Networks”, the Austrian Science Fund (FWF) under contract P25214-N23 “Analysis of Epidemic Processes and Algorithms in Large Networks”, and the 2012 SAMSUNG Global Research Outreach (GRO) grant “Fast Low Cost Methods to Learn Structure of Large Networks.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdullah, M., Draief, M.: Consensus on the Initial Global Majority by Local Majority Polling for a Class of Sparse Graphs (2013), http://www.arXiv.org

  2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs, http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html

  3. Alon, N., Chung, F.R.K.: Explicit construction of linear sized tolerant networks. Discrete Math. 72, 15–19 (1989)

    Article  MathSciNet  Google Scholar 

  4. Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Silvestri, R., Trevisan, L.: Simple Dynamics for Majority Consensus (2013), http://www.arXiv.org

  5. Brahma, S., Macharla, S., Pal, S.P., Singh, S.K.: Fair Leader Election by Randomized Voting. In: Ghosh, R.K., Mohanty, H. (eds.) ICDCIT 2004. LNCS, vol. 3347, pp. 22–31. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing Random Walks and Voting on Graphs. In: PODC 2012, pp. 47–56 (2012)

    Google Scholar 

  7. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing Random Walks and Voting on Connected Graphs. SIAM J. on Discrete Math. 27(4), 1748–1758 (2013)

    Article  MATH  Google Scholar 

  8. Cooper, C., Frieze, A., Radzik, B.: Multiple Random Walks in Random Regular Graphs. SIAM J. on Discrete Math. 23(4), 1738–1761 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cooper, C., Frieze, A., Reed, B.: Random regular graphs of non-constant degree: connectivity and Hamilton cycles. Combinatorics Prob. & Comp. 11, 249–262 (2002)

    MATH  MathSciNet  Google Scholar 

  10. Cruise, J., Ganesh, A.: Probabilistic consensus via polling and majority rules. arXiv:1311.4805

    Google Scholar 

  11. Deng, X., Papadimitriou, C.: On the Complexity of Cooperative Solution Concepts. Mathematics of Operations Research 19(2), 257–266 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Doerr, B., Goldberg, L.A., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing Consensus with the Power of Two Choices. In: SPAA 2011, pp. 149–158 (2011)

    Google Scholar 

  13. Donnelly, P., Welsh, D.: Finite particle systems and infection models. Math. Proc. Camb. Phil. Soc. 94(1), 167–182 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fountoulakis, N., Panagiotou, K.: Rumor Spreading on Random Regular Graphs and Expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010. LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Frieze, A., Łuczak, T.: On the independence and chromatik numbers of random graphs. J. Combinatorial Theory, Ser. B 54, 123–132 (1992)

    Article  MATH  Google Scholar 

  16. Friedman, J.: A proof of Alon’s second eigenvalue conjecture. In: STOC 2003, pp. 720–724 (2003)

    Google Scholar 

  17. Gifford, D.: Weighted Voting for Replicated Data. In: SOSP 1979, pp. 150–162 (1979)

    Google Scholar 

  18. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to proportionate agreement. Information & Computation 171(2), 248–268 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jerrum, M., Sinclair, A.: Conductance and the rapid mixing property for Markov chains: the approximation of permanent resolved. In: STOC 1988, pp. 235–244 (1988)

    Google Scholar 

  20. Johnson, B.: Design and Analysis of Fault Tolerant Digital Systems. Addison-Wesley (1989)

    Google Scholar 

  21. Mossel, E., Neeman, J., Tamuz, O.: Majority Dynamics and Aggregation of Information in Social Networks, arXiv:1207.0893 (2012)

    Google Scholar 

  22. Nakata, T., Imahayashi, H., Yamashita, M.: Probabilistic local majority voting for the agreement problem on finite graphs. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 330–338. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Oliviera, R.I.: On the Coalescence Time of Reversible Random Walks. Trans. Amer. Math. Soc. 364, 2109–2128 (2012)

    Article  MathSciNet  Google Scholar 

  24. Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics, pp. 239–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cooper, C., Elsässer, R., Radzik, T. (2014). The Power of Two Choices in Distributed Voting. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics