[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bat Algorithm, Genetic Algorithm and Shuffled Frog Leaping Algorithm for Designing Machine Layout

  • Conference paper
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8271))

Abstract

Arranging non-identical machines into a limited area of manufacturing shop floor is an essential part of plant design. Material handling distance is one of the key performance indexes of internal logistic activities within manufacturing companies. It leads to the efficient productivity and related costs. Machine layout design is known as facility layout problem and classified into non-deterministic polynomial-time hard problem. The objective of this paper was to compare the performance of Bat Algorithm (BA), Genetic Algorithm (GA) and Shuffled Frog Leaping Algorithm (SFLA) for designing machine layouts in a multiple-row environment with the aim to minimise the total material handling distance. An automated machine layout design tool has been coded in modular style using a general purpose programming language called Tcl/Tk. The computational experiment was designed and conducted using four MLD benchmark datasets adopted from literature. It was found that the proposed algorithms performed well in different aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pongcharoen, P., Hicks, C., Braiden, P.M., Stewardson, D.J.: Determining optimum Genetic Algorithm parameters for scheduling the manufacturing and assembly of complex products. International Journal of Production Economics 78, 311–322 (2002)

    Article  Google Scholar 

  2. Pongcharoen, P., Chainate, W., Pongcharoen, S.: Improving Artificial Immune System Performance: Inductive Bias and Alternative Mutations. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 220–231. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Kirkpatrick, S., Gelatt, C.D., Cevvhi, M.P.: Optimization by Simulated Annealing. Science New Series 220, 671–680 (1983)

    Google Scholar 

  4. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: Harmony search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

  5. Glover, F.: Tabu search: Part I. ORCA Journal on Computing 1, 190–206 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Publishing Company, Inc. (1989)

    Google Scholar 

  7. Holland, J.H.: Outline for a logical theory of adaptive systems. Journal of ACM 3, 297–314 (1962)

    Article  Google Scholar 

  8. Dorigo, M.: Optimization, Learning and Nature Algorithms. PhD, Politecnico di Milano, Italy (1992)

    Google Scholar 

  9. Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the Shuffled Frog Leaping Algorithm. Journal of Water Resources Planning and Management-Asce 129, 210–225 (2003)

    Article  Google Scholar 

  10. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithm. Luniver Press (2008)

    Google Scholar 

  11. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithm, 2nd edn. Luniver Press (2010)

    Google Scholar 

  12. Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A.: Facilities Planning, 4th edn. John Wiley & Sons, Inc. (2010)

    Google Scholar 

  13. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querdo, T.: A survey for the quadratic assignment problem. European Journal of Operational Research 176, 657–690 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, G., Guo, L.: A novel hybrid bat algorithm with harmony search for global numerical optimization. Journal of Applied Mathematics 2013 (2013)

    Google Scholar 

  15. Musikapun, P., Pongcharoen, P.: Solving multi-stage multi-machine multi-product scheduling problem using Bat Algorithm. In: 2nd International Conference on Management and Artificial Intelligence, Thailand (2012)

    Google Scholar 

  16. Gandomi, A.H., Yang, X.S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained optimization tasks. Neural Computing and Applications, 1–17 (2012)

    Google Scholar 

  17. Yang, X.S.: Bat algorithm for multi-objective optimisation. International Journal of Bio-Inspired Computation 3, 267–274 (2011)

    Article  Google Scholar 

  18. Yang, X.S., Gandomi, A.H.: Bat algorithm: A novel approach for global engineering optimization. Engineering Computations (Swansea, Wales) 29, 464–483 (2012)

    Article  Google Scholar 

  19. Vitayasak, S.: Facility layout problem: a 10-year review and reserach perspectives. Naresuan Unversity Engineering Journal 5, 46–62 (2010) (in Thai)

    Google Scholar 

  20. Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: A survey. Annual Reviews in Control 31, 255–267 (2007)

    Article  Google Scholar 

  21. Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Annual of Operations Research 63 (1996)

    Google Scholar 

  22. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. John Wiley & Sons, Inc. (1997)

    Google Scholar 

  23. Pan, Q.-K., Wang, L., Gao, L., Li, J.: An effective shuffled frog-leaping algorithm for lot-streaming flow shop scheduling problem. International Journal of Advanced Manufacturing Technology (2010)

    Google Scholar 

  24. Ousterhout, J.K.: Tcl and Tk tookit, 2nd edn. Addison Wesley (2010)

    Google Scholar 

  25. Nearchou, A.C.: Meta-heuristics from nature for the loop layout design problem. International Journal of Production Economics 101, 312–328 (2006)

    Article  Google Scholar 

  26. Vitayasak, S.: Multiple-row rotatable machine layout using Genetic Algorithm. Research report, Naresuan Univeristy, Phitsanulok, Thailand (2011) (in Thai)

    Google Scholar 

  27. Vitayasak, S., Pongcharoen, P.: Interaction of crossover and mutation operations for designing non-rotatable machine layout. In: Operations Research Network Conference, Bangkok, Thailand (2011)

    Google Scholar 

  28. Leechai, N., Iamtan, T., Pongcharoen, P.: Comparison on Rank-based Ant System and Shuffled Frog Leaping for design multiple row machine layout. SWU Engineering Journal 4, 102–115 (2009)

    Google Scholar 

  29. Singpraya, S., Dedklen, S., Vitayasak, S., Pongcharoen, P.: Adaptive Genetic Algorithm for designing non-identical rectangular machine layout. In: Operations Research Network Conference, Thailand (2012)

    Google Scholar 

  30. Iamtan, T., Pongcharoen, P.: Swap and adjustment techniques in Shuffled Frog Leaping algorithm for solving machine layout. Thai VCML Journal 3, 25–36 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dapa, K., Loreungthup, P., Vitayasak, S., Pongcharoen, P. (2013). Bat Algorithm, Genetic Algorithm and Shuffled Frog Leaping Algorithm for Designing Machine Layout. In: Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2013. Lecture Notes in Computer Science(), vol 8271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44949-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44949-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44948-2

  • Online ISBN: 978-3-642-44949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics