Abstract
Haptic rendering technologies are becoming a strategic component of the new Human-Machines Interfaces. However, many existing devices generally operate with intrusive mechanical structures that limit rendering and transparency of haptic interaction. Several studies have addressed these constraints with different stimulation technologies. According to the nature of contacts between the device and the user, three main strategies were identified. This paper proposes to detail them and to highlight their advantages and drawbacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bordegoni, M., Cugini, U., Belluco, P., Aliverti, M.: Evolution of a haptic-based interaction system for virtual manual assembly. In: Proceedings of the 3rd International Conference on Virtual and Mixed Reality, Berlin, Heidelberg, pp. 303–312 (2009)
Broeren, J., Georgsson, M., Rydmark, M., Sunnerhagen, K.: Virtual reality in stroke rehabilitation with the assistance of haptics and telemedicine. In: Proc. 7th ICDVRAT with ArtAbilitation, Maia, Portugal (2008)
Sourina, O., Wang, Q., Nguyen, M.K.: EEG-based Serious Games and Monitoring Tools for Pain Management. In: Proc. MMVR 18, Newport Beach, California, vol. 8(12), pp. 606–610 (February 2011)
Bai, M.R., Tsai, Y.K.: Impact localization combined with haptic feedback for touch panel applications based on the time-reversal approach. J. Acoust. Soc. Am. 129(3), 1297–1305 (2011)
Senseg, electrostimulation (2011), http://senseg.com/technology/
iPhone Haptics, Google Code Page, University of Glasgow, http://code.google.com/p/iphonehaptics/ (accessed August 29, 2010)
Hayward, V., Astley, O.R.: Performance measures for haptic interfaces. In: Robotics Research: The 7th International Symposium, pp. 195–207. Springer, Heidelberg (1996)
Hayward, V., Astley, O.R., Cruz-Hernandez, M., Grant, D., Robles-De-La-Torre, G.: Haptic interfaces and devices. Sensor Review 24(14), 16–29 (2004)
CyberTouch (2010), http://www.estkl.com/products/datagloves/cyberglovesystems/cybertouch.html
Anderson, T., Breckenridge, A., Davidson, G.: FGB: A Graphical and Haptic User Interface For Creating Graphical, Haptic User Interfaces, Sandia National Laboratories (1999)
Kim, S.C., Kim, C.H., Yang, T.H., Yang, G.-H., Kang, S.C., Kwon, D.S.: SaLT: Small and Lightweight Tactile Display Using Ultrasonic Actuators. In: Proc. 17th IEEE Int’l Symp. Robot and Human Interactive Comm. (RO-MAN 2008), pp. 430–435 (2008)
Stone, R.J.: Haptic Feedback: A Potted History, From Telepresence to Virtual Reality, MUSE Virtual Presence, Chester House, UK (2001)
Hirota, K., Hirose, M.: Surface Display: Concept and Implementation Approaches, ICAT/VRST. In: Int. Conf. on Artificial Reality and Tele-Existance, Japan, pp. 185–192 (1995)
Sato, K., Minamizawa, K., Kawakami, N., Tachi, S.: Haptic telexistence. In: ACM SIGGRAPH 2007 Emerging Technologies, New York, Article 10 (2007)
Drif, A., Citerin, J., Kheddar, A.: A multilevel haptic display design. In: 2004 IEEERSJ International Conference on Intelligent Robots and Systems IROS IEEE Cat No04CH37566, vol. 4, pp. 3595–3600 (2004)
Bordegoni, M., Ferrise, F., Covarrubias, M., Antolini, M.: Haptic and sound interface for shape rendering. In: Presence: Teleoperators and Virtual Environments, vol. 19(4), pp. 341–363. The MIT Press (August 2010)
Overholt, D., Pasztor, E., Mazalek, A.: A Multipurpose Array of Tactile Rods for Interactive sXpression, Technical Application, SIGGRAPH (2001)
Bianchi, M., Gwilliam, J.C., Degirmenci, A., Okamura, A.M.: Characterization of an Air Jet Haptic Lump Display. In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2011)
Tsalamlal, M.Y., Ouarti, N., Ammi, M.: Psychophysical study of air jet based tactile stimulation. In: IEEE World Haptics Conference (accepted, 2013)
Inoue, K., Kato, F., Lee, S.: Haptic device using flexible sheet and air jet for presenting virtual lumps under skin. In: Proc. IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, pp. 1749–1754 (2009)
Iwamoto, T., Tatezono, M., Shinoda, H.: Non-Contact Method for Producing Tactile Sensation Using Airborne Ultrasound. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 504–513. Springer, Heidelberg (2008)
Suzuki, Y., Kobayashi, M.: Air jet driven force feedback in virtual reality. IEEE Computer Graphics and Applications, 44–47 (2005)
Xu, Y., Hunter, I.W., Hollerbach, J.M., Bennett, D.J.: An air jet actuator system for identification of the human arm joint mechanical properties. IEEE Transactions on Biomedical Engineering 38, 1111–1122 (1991)
Romano, J.M., Kuchenbecker, K.J.: The AirWand: Design and Characterization of a Large-Workspace Haptic Device. In: Proceedings, IEEE International Conference on Robotics and Automation, pp. 1461–1466 (May 2009)
Gurocak, H., Jayaram, S., Parrish, B., and Jayaram, U.: Weight Sensation in Virtual Environments Using a Haptic Device With Air Jets. Presented at J. Comput. Inf. Sci. Eng., 130–135 (2003)
Hoshi, T., Takahashi, M., Iwamato, T., Shinoda, M.: Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound. IEEE Transactions on Haptics 3(3), 155–165 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tsalamlal, M.Y., Ouarti, N., Ammi, M. (2013). Non-intrusive Haptic Interfaces: State-of-the Art Survey. In: Oakley, I., Brewster, S. (eds) Haptic and Audio Interaction Design. HAID 2013. Lecture Notes in Computer Science, vol 7989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41068-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-41068-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41067-3
Online ISBN: 978-3-642-41068-0
eBook Packages: Computer ScienceComputer Science (R0)