[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adjustable References

  • Conference paper
Interactive Theorem Proving (ITP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7998))

Included in the following conference series:

Abstract

Even when programming purely mathematical functions, mutable state is often necessary to achieve good performance, as it underlies important optimisations such as path compression in union-find algorithms and memoization. Nevertheless, verified programs rarely use mutable state because of its substantial verification cost: one must either commit to a deep embedding or follow a monadic style of programming. To avoid this cost, we propose using adjustable state instead. More concretely, we extend Coq with a type of adjustable references, which are like ML references, except that the stored values are only partially observable and updatable only to values that are observationally indistinguishable from the old ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appel, A.W., Blazy, S.: Separation logic for small-step Cminor. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 5–21. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Aydemir, B.E., et al.: Mechanized Metatheory for the Masses: The PoplMark Challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bertot, Y.: A short presentation of Coq. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 12–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Chlipala, A.: Mostly-automated verification of low-level programs in computational separation logic. In: PLDI 2011, pp. 234–245. ACM (2011)

    Google Scholar 

  5. Conchon, S., Filliâtre, J.-C.: A persistent union-find data structure. In: Russo, C.V., Dreyer, D. (eds.) ML 2007, pp. 37–46. ACM (2007)

    Google Scholar 

  6. Hur, C., Dreyer, D., Neis, G., Vafeiadis, V.: The marriage of bisimulations and Kripke logical relations. In: POPL 2012, pp. 59–72. ACM (2012)

    Google Scholar 

  7. Letouzey, P.: A new extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Nanevski, A., Morrisett, G., Birkedal, L.: Hoare type theory, polymorphism and separation. J. Functional Programming 18(5-6), 865–911 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nanevski, A., Vafeiadis, V., Berdine, J.: Structuring the verification of heap-manipulating programs. In: POPL 2010, pp. 261–274. ACM (2010)

    Google Scholar 

  10. Pitts, A.M., Stark, I.D.B.: Operational Reasoning for Functions with Local State. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, pp. 227–273. CUP (1998)

    Google Scholar 

  11. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Tarjan, R.E., Van Leeuwen, J.: Worst-case analysis of set union algorithms. JACM 31(2), 245–281 (1984)

    Article  MATH  Google Scholar 

  13. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Yu, D., Shao, Z.: Verification of safety properties for concurrent assembly code. In: ICFP 2004, pp. 175–188. ACM (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vafeiadis, V. (2013). Adjustable References. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39634-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39633-5

  • Online ISBN: 978-3-642-39634-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics