[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Modelling an Attention-Based Text Localization Process

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7887))

Included in the following conference series:

  • 1906 Accesses

Abstract

This note introduces a visual attention model of text localization in real-world scenes. The core of the model built upon the proto-object concept is discussed. It is shown how such dynamic mid-level representation of the scene can be derived in the framework of an action-perception loop engaging salience, text information value computation, and eye guidance mechanisms.

Preliminary results that compare model generated scanpaths with those eye-tracked from human subjects are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boccignone, G., Ferraro, M.: Feed and fly control of visual scanpaths for foveation image processing. Annals of Telecommunications, 1–17 (2012), http://dx.doi.org/10.1007/s12243-012-0316-9

  2. Boccignone, G., Ferraro, M.: Gaze shift behavior on video as composite information foraging. Signal Processing: Image Communication, 1–18 (2012), http://dx.doi.org/10.1016/j.image.2012.07.002

  3. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. PAMI 35(1), 135–207 (2013)

    Article  Google Scholar 

  4. Cerf, M., Frady, E., Koch, C.: Faces and text attract gaze independent of the task: Experimental data and computer model. Journal of Vision 9(12) (2009)

    Google Scholar 

  5. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye tracking: a comprehensive guide to methods and measures. Oxford University Press, Oxford (2011)

    Google Scholar 

  6. Karaoglu, S., van Gemert, J., Gevers, T.: Object reading: Text recognition for object recognition. In: Proc. ECCV 2012 Workshop IFCVCR (2012)

    Google Scholar 

  7. Meng, Q., Song, Y.: Text detection in natural scenes with salient region. In: Proceedings of the 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 384–388. IEEE Computer Society (2012)

    Google Scholar 

  8. Neumann, L., Matas, J.: A method for text localization and recognition in real-world images. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 770–783. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Rensink, R.A.: The dynamic representation of scenes. Vis. Cognit. 7, 17–42 (2000)

    Article  Google Scholar 

  10. Schütz, A., Braun, D., Gegenfurtner, K.: Eye movements and perception: A selective review. Journal of Vision 11(5) (2011)

    Google Scholar 

  11. Seo, H., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance. Journal of Vision 9(12), 1–27 (2009)

    Article  Google Scholar 

  12. Shahab, A., Shafait, F., Dengel, A.: Bayesian approach to photo time-stamp recognition. In: Proc. ICDAR, pp. 1039–1043. IEEE (2011)

    Google Scholar 

  13. Shahab, A., Shafait, F., Dengel, A., Uchida, S.: How salient is scene text? In: Proc. 10th IAPR Int. Workshop on DAS, pp. 317–321. IEEE (2012)

    Google Scholar 

  14. Sumathi, C., Santhanam, T., Priya, N.: Techniques and challenges of automatic text extraction in complex images: a survey. J. Theor. Appl. Inf. Tech. 35(2) (2012)

    Google Scholar 

  15. Sun, Q., Lu, Y., Sun, S.: A visual attention based approach to text extraction. In: Proc. 20th ICPR, pp. 3991–3995. IEEE (2010)

    Google Scholar 

  16. Tatler, B., Hayhoe, M., Land, M., Ballard, D.: Eye guidance in natural vision: Reinterpreting salience. Journal of Vision 11(5) (2011)

    Google Scholar 

  17. Tatler, B., Vincent, B.: The prominence of behavioural biases in eye guidance. Visual Cognition 17(6-7), 1029–1054 (2009)

    Article  Google Scholar 

  18. Tipping, M.: Sparse bayesian learning and the relevance vector machine. The Journal of Machine Learning Research 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Torralba, A., Oliva, A., Castelhano, M., Henderson, J.: Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychological Review 113(4), 766 (2006)

    Article  Google Scholar 

  20. Wang, H., Pomplun, M.: The attraction of visual attention to texts in real-world scenes. Journal of Vision 12(6) (2012)

    Google Scholar 

  21. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: Proc. ICCV, pp. 1457–1464. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clavelli, A., Karatzas, D., Lladós, J., Ferraro, M., Boccignone, G. (2013). Towards Modelling an Attention-Based Text Localization Process. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38628-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38627-5

  • Online ISBN: 978-3-642-38628-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics