[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Batch Verification Suitable for Efficiently Verifying a Limited Number of Signatures

  • Conference paper
Information Security and Cryptology – ICISC 2012 (ICISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7839))

Included in the following conference series:

Abstract

Batch verification is a method for verifying digital signatures at once. Batch verification can reduce the computational cost compared to that of verifying each signature one by one, and in particular, batch verification is especially appropriate for systems which are required to verify a large amount of signatures. However, in addition to the above requirement, several types of systems might also require verifying a limited number of digital signatures more and more efficiently in real-time. For this purpose, to improve the efficiency of verifying a limited number of signatures is presumably an important matter. This paper deals with the second requirement and proposes an efficient batch verification technique suitable for verifying a limited number of signatures in real-time. Our method can only be applied to elliptic curve based signatures, and uses one of the two special families of elliptic curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated Verification of ECDSA Signatures. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast Exponentiation with Precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  3. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998), http://www-cse.ucsd.edu/users/mihir

    Chapter  Google Scholar 

  4. Boyd, C., Pavlovski, C.: Attacking and Repairing Batch Verification Schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 58–71. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch Verification of Short Signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Cheon, J.H., Lee, D.H.: Use of Sparse and/or Complex Exponents in Batch Verification of Exponentiations. IEEE Transactions on Computers 55(12), 1536–1542 (2006)

    Article  Google Scholar 

  7. Coron, J.-S., Naccache, D.: On the Security of RSA Screening. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 197–203. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Cheon, J.H., Yi, J.H.: Fast Batch Verification of Multiple Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Guo, F., Mu, Y., Chen, Z.: Efficient Batch Verification of Short Signatures for a Single-Signer Setting without Random Oracles. In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 49–63. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Harn, L.: Batch Verifying Multiple DSA Digital Signatures. Electronics Letters 34(9), 870–871 (1998)

    Article  Google Scholar 

  12. Harn, L.: Batch Verifying Multiple RSA Digital Signatures. Electronics Letters 34(12), 1219–1220 (1998)

    Article  Google Scholar 

  13. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)

    MATH  Google Scholar 

  14. Harrison, K., Page, D., Smart, N.P.: Software Implementation of Finite Fields of Characteristic Three, for Use in Pairing-based Cryptosystems. LMS Journal of Computation and Mathematics 5(1), 181–193 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hwang, M.S., Lee, C.C., Lu, E.J.: Cryptanalysis of the Batch Verifying Multiple DSA-Type Digital Signatures. Pakistan Journal of Applied Sciences 1(3), 287–288 (2001)

    Google Scholar 

  16. Hakuta, K., Katoh, Y., Sato, H., Takagi, T.: Batch Verification Suitable for Efficiently Verifying A Limited Number of Signatures. In: Preproceedings of the 15th Annual International Conference on Information Security and Cryptology, ICISC 2012 (2012)

    Google Scholar 

  17. Hakuta, K., Sato, H., Takagi, T.: Efficient arithmetic on subfield elliptic curves over small finite fields of odd characteristic. J. Math. Cryptol. 4(3), 199–238 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Hakuta, K., Sato, H., Takagi, T.: Explicit lower bound for the length of minimal weight τ-adic expansions on Koblitz curves. J. Math-for-Ind. 2A, 75–83 (2010)

    MathSciNet  Google Scholar 

  19. Koblitz, N.: An Elliptic Curve Implementation of the Finite Field Digital Signature Algorithm. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 327–337. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. National Institute for Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-3 (June 2009), http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

  21. Lee, S., Cho, S., Choi, J., Cho, J.: Efficient Identification of Bad Signatures in RSA-Type Batch Signatures. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A(1), 74–80 (2006)

    Article  Google Scholar 

  22. Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A be Improved? Complexity trade-offs with the Digital Signature Standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  23. Pastuszak, J., Michałek, D., Pieprzyk, J., Seberry, J.: Identification of Bad Signatures in Batches. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 28–45. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Park, T.-J., Lee, M.-K., Park, K.: New Frobenius Expansions for Elliptic Curves with Efficient Endomorphisms. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 264–282. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer (1986)

    Google Scholar 

  26. Smart, N.P.: Elliptic Curve Cryptosystems over Small Fields of Odd Characteristic. Journal of Cryptology 12(2), 141–151 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Solinas, J.A.: Efficient Arithmetic on Koblitz Curves. Des. Codes Cryptogr. 19(2-3), 195–249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Stanek, M.: Attacking LCCC Batch Verification of RSA Signatures. International Journal of Network Security 6(2), 238–240 (2008)

    Google Scholar 

  30. Kumar, V., Madria, S.: Secure Data Aggregation in Wireless Sensor Networks. In: Hara, T., Zadorozhny, V.I., Buchmann, E. (eds.) Wireless Sensor Network Technologies for the Information Explosion Era. SCI, vol. 278, pp. 77–107. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Yen, S.M., Laih, C.S.: Improved Digital Signature Suitable for Batch Verification. IEEE Transactions on Computers 44(7), 957–959 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hakuta, K., Katoh, Y., Sato, H., Takagi, T. (2013). Batch Verification Suitable for Efficiently Verifying a Limited Number of Signatures. In: Kwon, T., Lee, MK., Kwon, D. (eds) Information Security and Cryptology – ICISC 2012. ICISC 2012. Lecture Notes in Computer Science, vol 7839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37682-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37682-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37681-8

  • Online ISBN: 978-3-642-37682-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics