[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Generic Cyclic Theorem Prover

  • Conference paper
Programming Languages and Systems (APLAS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7705))

Included in the following conference series:

Abstract

We describe the design and implementation of an automated theorem prover realising a fully general notion of cyclic proof. Our tool, called \(\textsc{Cyclist}\), is able to construct proofs obeying a very general cycle scheme in which leaves may be linked to any other matching node in the proof, and to verify the general, global infinitary condition on such proof objects ensuring their soundness. \(\textsc{Cyclist}\) is based on a new, generic theory of cyclic proofs that can be instantiated to a wide variety of logics. We have developed three such concrete instantiations, based on: (a) first-order logic with inductive definitions; (b) entailments of pure separation logic; and (c) Hoare-style termination proofs for pointer programs. Experiments run on these instantiations indicate that \(\textsc{Cyclist}\) offers significant potential as a future platform for inductive theorem proving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cyclist framework download, http://www.cs.ucl.ac.uk/staff/ngorogia/

  2. Avenhaus, J., Kühler, U., Schmidt-Samoa, T., Wirth, C.-P.: How to Prove Inductive Theorems? QuodLibet! In: Baader, F. (ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 328–333. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic Termination Proofs for Programs with Shape-Shifting Heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Brotherston, J.: Cyclic Proofs for First-Order Logic with Inductive Definitions. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Brotherston, J.: Sequent Calculus Proof Systems for Inductive Definitions. Ph.D. thesis, University of Edinburgh (November 2006)

    Google Scholar 

  6. Brotherston, J.: Formalised Inductive Reasoning in the Logic of Bunched Implications. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in separation logic. In: POPL-35, pp. 101–112. ACM (2008)

    Google Scholar 

  8. Brotherston, J., Distefano, D., Petersen, R.L.: Automated Cyclic Entailment Proofs in Separation Logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. Journal of Logic and Computation 21(6), 1177–1216 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bundy, A.: The automation of proof by mathematical induction. In: Handbook of Automated Reasoning, vol. I, ch. 13, pp. 845–911. Elsevier Science (2001)

    Google Scholar 

  11. Couvreur, J.-M.: On-the-fly Verification of Linear Temporal Logic. In: Wing, J., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Dixon, L., Fleuriot, J.: IsaPlanner: A Prototype Proof Planner in Isabelle. In: Baader, F. (ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 279–283. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Duret-Lutz, A., Poitrenaud, D.: Spot: An extensible model checking library using transition-based generalized Büchi automata. In: MASCOTS, pp. 76–83 (2004)

    Google Scholar 

  14. Fogarty, S., Vardi, M.Y.: Büchi Complementation and Size-Change Termination. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 16–30. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi Complementation Made Tighter. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 64–78. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Johansson, M., Dixon, L., Bundy, A.: Conjecture synthesis for inductive theories. Journal of Automated Reasoning 47(3) (October 2011)

    Google Scholar 

  17. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer (2000)

    Google Scholar 

  18. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL-28, pp. 81–92. ACM (2001)

    Google Scholar 

  19. Nguyen, H.H., Chin, W.N.: Enhancing Program Verification with Lemmas. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 355–369. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Schöpp, U., Simpson, A.: Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 372–386. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Sprenger, C., Dam, M.: A note on global induction mechanisms in a μ-calculus with explicit approximations. Theor. Informatics and Applications 37, 365–399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sprenger, C., Dam, M.: On the Structure of Inductive Reasoning: Circular and Tree-Shaped Proofs in the μ-Calculus. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 425–440. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Stirling, C., Walker, D.: Local model checking in the modal μ-calculus. Theoretical Computer Science 89, 161–177 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wirth, C.P.: Descente infinie + Deduction. Logic J. of the IGPL 12(1), 1–96 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brotherston, J., Gorogiannis, N., Petersen, R.L. (2012). A Generic Cyclic Theorem Prover. In: Jhala, R., Igarashi, A. (eds) Programming Languages and Systems. APLAS 2012. Lecture Notes in Computer Science, vol 7705. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35182-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35182-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35181-5

  • Online ISBN: 978-3-642-35182-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics