Abstract
We introduce SRBench, a general-purpose benchmark primarily designed for streaming RDF/SPARQL engines, completely based on real-world data sets from the Linked Open Data cloud. With the increasing problem of too much streaming data but not enough tools to gain knowledge from them, researchers have set out for solutions in which Semantic Web technologies are adapted and extended for publishing, sharing, analysing and understanding streaming data. To help researchers and users comparing streaming RDF/SPARQL (strRS) engines in a standardised application scenario, we have designed SRBench, with which one can assess the abilities of a strRS engine to cope with a broad range of use cases typically encountered in real-world scenarios. The data sets used in the benchmark have been carefully chosen, such that they represent a realistic and relevant usage of streaming data. The benchmark defines a concise, yet comprehensive set of queries that cover the major aspects of strRS processing. Finally, our work is complemented with a functional evaluation on three representative strRS engines: SPARQLStream, C-SPARQL and CQELS. The presented results are meant to give a first baseline and illustrate the state-of-the-art.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event processing and stream reasoning. In: WWW 2011, pp. 635–644 (2011)
Arasu, A., Babu, S., Widom, J.: CQL: A Language for Continuous Queries over Streams and Relations. In: Lausen, G., Suciu, D. (eds.) DBPL 2003. LNCS, vol. 2921, pp. 1–19. Springer, Heidelberg (2004)
Arasu, A., et al.: Linear Road: A Stream Data Management Benchmark. In: Proc. of the 30th VLDB Conference, Toronto, Canada, pp. 480–491 (2004)
Arenas, M., Conca, S., Pérez, J.: Counting Beyond a Yottabyte, or how SPARQL 1.1 Property Paths will Prevent Adoption of the Standard. In: WWW (2012)
Balazinska, M., et al.: Data Management in the Worldwide Sensor Web. IEEE Pervasive Computing 6(2), 30–40 (2007)
Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Querying RDF Streams with C-SPARQL. SIGMOD Record 39(1), 20–26 (2010)
Berners-Lee, T.: Linked Data - Design Issues (2009), http://www.w3.org/DesignIssues/LinkedData.html
Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. Int. J. Semantic Web Inf. Syst. 5(2), 1–24 (2009)
Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - Extending SPARQL to Process Data Streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)
Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A., Ye, F.: A Semantics-Based Middleware for Utilizing Heterogeneous Sensor Networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 174–188. Springer, Heidelberg (2007)
Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling Ontology-Based Access to Streaming Data Sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010)
CKAN - the Data Hub, http://thedatahub.org/
Corcho, O., et al.: Characterisation mechanisms for unknown data sources. EU Project PlanetData (FP7-257641), Deliverable 1.1 (2011)
Corcho, O., García-Castro, R.: Five challenges for the semantic sensor web. Semantic Web 1(1), 121–125 (2010)
DBpedia, http://wiki.dbpedia.org/
Della Valle, E., et al.: It’s a Streaming World! Reasoning upon Rapidly Changing Information. IEEE Intelligent Systems 24(6), 83–89 (2009)
Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and Oranges: A Comparison of RDF Benchmarks and Real RDF Datasets. In: SIGMOD (2011)
GeoNames Ontology, http://www.geonames.org/ontology/
Gray, J.: The Benchmark Handbook for Database and Transaction Systems. Morgan Kaufmann (1993)
Groppe, S., et al.: A SPARQL Engine for Streaming RDF Data. In: SITIS (2007)
Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for owl knowledge base systems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3), 158–182 (2005)
Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Working Draft, World Wide Web Consortium (January 05, 2012), http://www.w3.org/TR/sparql11-query/
Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research (October 2009)
Hoeksema, J.: A Parallel RDF Stream Reasoner and C-SPARQL Processor Using the S4 Framework. Master’s thesis, VU University, Amsterdam, The Netherlands (October 2011)
Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)
Le-Phuoc, D., Hauswirth, M.: Linked open data in sensor data mashups. In: Proceedings of the 2nd International Workshop on Semantic Sensor Networks (SSN 2009), pp. 1–16 (2009)
LinkedSensorData, http://wiki.knoesis.org/index.php/LinkedSensorData
Pérez, J., et al.: Semantics and Complexity of SPARQL. ACM TODS 34(3), 1–45 (2009)
Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation, World Wide Web Consortium (January 15, 2008)
Schmidt, M., et al.: SP2Bench: A SPARQL Performance Benchmark. In: ICDE (2009)
Sequeda, J., Corcho, O.: Linked stream data: A position paper. In: Proceedings of Semantic Sensor Networks, pp. 148–157 (2009)
Sheth, A.P., et al.: Semantic Sensor Web. IEEE Internet Computing 12(4), 78–83 (2008)
SRBench wiki, http://www.w3.org/wiki/SRBench
The Linking Open Data cloud diagram, http://richard.cyganiak.de/2007/10/lod/
Walavalkar, O., et al.: Streaming Knowledge Bases. In: SSWS (2008)
Whitehouse, K., Zhao, F., Liu, J.: Semantic Streams: A Framework for Composable Semantic Interpretation of Sensor Data. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 5–20. Springer, Heidelberg (2006)
Zhang, Y., et al.: Benchmarking RDF Storage Engines. EU Project PlanetData, Deliverable 1.2 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, JP. (2012). SRBench: A Streaming RDF/SPARQL Benchmark. In: Cudré-Mauroux, P., et al. The Semantic Web – ISWC 2012. ISWC 2012. Lecture Notes in Computer Science, vol 7649. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35176-1_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-35176-1_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35175-4
Online ISBN: 978-3-642-35176-1
eBook Packages: Computer ScienceComputer Science (R0)