[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SlopPy: Slope One with Privacy

  • Conference paper
Data Privacy Management and Autonomous Spontaneous Security (DPM 2012, SETOP 2012)

Abstract

In order to contribute to solve the personalization/privacy paradox, we propose a privacy-preserving architecture for one of state-of-the-art recommendation algorithm, Slope One. More precisely, we describe SlopPy (for Slope One with Privacy), a privacy-preserving version of Slope One in which a user never releases directly his personal information (i.e, his ratings). Rather, each user first perturbs locally his information by applying a Randomized Response Technique before sending this perturbed data to a semi-trusted entity responsible for storing it. While there is a trade-off to set between the desired privacy level and the utility of the resulting recommendation, our preliminary experiments clearly demonstrate that SlopPy is able to provide a high level of privacy at the cost of a small decrease of utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basu, A., Vaidya, J., Kikuchi, H.: Perturbation Based Privacy Preserving Slope One Predictors for Collaborative Filtering. In: Dimitrakos, T., Moona, R., Patel, D., McKnight, D.H. (eds.) IFIPTM 2012. IFIP AICT, vol. 374, pp. 17–35. Springer, Heidelberg (2012)

    Google Scholar 

  2. Basu, A., Vaidya, J., Kikuchi, H.: Privacy preserving weighted Slope One predictor for item-based collaborative filtering. In: Proceedings of the International Workshop on Trust and Privacy in Distributed Information Processing (co-organized with IFIPTM 2011) (2011)

    Google Scholar 

  3. Basu, A., Vaidya, J., Kikuchi, H.: Efficient privacy-preserving collaborative filtering based on the weighted Slope One predictor. Journal of Internet Services and Information Security 1(4) (2011)

    Google Scholar 

  4. Das, A., Datar, M., Garg, A.: Google news personalization: Scalable online collaborative filtering. In: Proceedings of the 16th International Conference on World Wide Web (WWW 2007), pp. 271–280 (2007)

    Google Scholar 

  5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320 (2004)

    Google Scholar 

  6. Fredrikson, M., Livshits, B.: RePriv: Re-imagining content personalization and in-browser privacy. In: Proceedings of the 32nd IEEE Symposium on Security and Privacy, pp. 131–146 (2011)

    Google Scholar 

  7. Guha, S., Cheng, B., Francis, P.: Privad: practical privacy in online advertising. In: Proceedings of the 8th USENIX Symposium on Networks, System Design and Implementation (2011)

    Google Scholar 

  8. Kobsa, A.: Privacy-enhanced personalization. Communications of the ACM 50(8), 24–33 (2007)

    Article  Google Scholar 

  9. Lemire, D., Maclachlan, A.: Slope One predictors for online rating-based collaborative filtering. In: Proceedings of the 2005 SIAM International Data Mining Conference (SDM 2005) (2005)

    Google Scholar 

  10. Linden, G., Smith, B., York, J.: Amazon.com recommendations item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)

    Article  Google Scholar 

  11. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: Proceedings of the 29th IEEE Symposium on Security and Privacy, pp. 111–125 (2008)

    Google Scholar 

  12. Olesen, H., Noll, J., Hoffmann, M.: User profiles, personalization and privacy (2009)

    Google Scholar 

  13. Ostrovsky, R., Skeith III, W.E.: A Survey of Single-Database Private Information Retrieval: Techniques and Applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  15. Pashalidis, A., Preneel, B.: Evaluating tag-based preference obfuscation systems. IEEE Transactions on Knowledge and Data Engineering 24(9), 1613–1623 (2012)

    Article  Google Scholar 

  16. Polat, H., Du, W.: Achieving Private Recommendations Using Randomized Response Techniques. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 637–646. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Toubiana, V., Narayanan, A., Boneh, D., Nissenbaum, H., Barocas, S.: Adnostic: Privacy preserving targeted advertising. In: Proceedings of the Network and Distributed System Security Symposium, NDSS 2010 (2010)

    Google Scholar 

  18. Warner, S.L.: Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association 60, 63–69 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gambs, S., Lolive, J. (2013). SlopPy: Slope One with Privacy. In: Di Pietro, R., Herranz, J., Damiani, E., State, R. (eds) Data Privacy Management and Autonomous Spontaneous Security. DPM SETOP 2012 2012. Lecture Notes in Computer Science, vol 7731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35890-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35890-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35889-0

  • Online ISBN: 978-3-642-35890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics