[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A First Study on Decomposition Strategies with Data with Class Noise Using Decision Trees

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7209))

Included in the following conference series:

Abstract

Noise is a common problem that produces negative consequences in classification problems. When a problem has more than two classes, that is, a multi-class problem, an interesting approach to deal with noise is to decompose the problem into several binary subproblems, reducing the complexity and consequently dividing the effects caused by noise into each of these subproblems. This contribution analyzes the use of decomposition strategies, and more specifically the One-vs-One scheme, to deal with multi-class datasets with class noise. In order to accomplish this, the performance of the decision trees built by C4.5, with and without decomposition, are studied. The results obtained show that the use of the One-vs-One strategy significantly improves the performance of C4.5 when dealing with noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley, New York (2001)

    MATH  Google Scholar 

  2. Anand, A., Suganthan, P.N.: Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates. Journal of Theoretical Biology 259(3), 533–540 (2009)

    Article  Google Scholar 

  3. Hong, J.H., Min, J.K., Cho, U.K., Cho, S.B.: Fingerprint classification using one-vs-all support vector machines dynamically ordered with naïve bayes classifiers. Pattern Recognition 41(2), 662–671 (2008)

    Article  MATH  Google Scholar 

  4. Wang, R.Y., Storey, V.C., Firth, C.P.: A Framework for Analysis of Data Quality Research. IEEE Transactions on Knowledge and Data Engineering 7(4), 623–640 (1995)

    Article  Google Scholar 

  5. Zhu, X., Wu, X.: Class Noise vs. Attribute Noise: A Quantitative Study. Artificial Intelligence Review 22, 177–210 (2004)

    Article  MATH  Google Scholar 

  6. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  7. Brodley, C.E., Friedl, M.A.: Identifying Mislabeled Training Data. Journal of Artificial Intelligence Research 11, 131–167 (1999)

    MATH  Google Scholar 

  8. Lorena, A., de Carvalho, A., Gama, J.: A review on the combination of binary classifiers in multiclass problems. Artificial Intelligence Review 30, 19–37 (2008)

    Article  Google Scholar 

  9. Knerr, S., Personnaz, L., Dreyfus, G.: Single-Layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network. In: Fogelman Soulié, F., Hérault, J. (eds.) Neurocomputing: Algorithms, Architectures and Applications, pp. 41–50. Springer, Heidelberg (1990)

    Google Scholar 

  10. Anand, R., Mehrotra, K., Mohan, C.K., Ranka, S.: Efficient classification for multiclass problems using modular neural networks. IEEE Transactions on Neural Networks 6(1), 117–124 (1995)

    Article  Google Scholar 

  11. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  12. Furnkranz, J.: Round Robin Classification (2002)

    Google Scholar 

  13. Sun, Y., Wong, A. K. C., Kamel, M. S.: Classification of Imbalanced Data: a Review. International Journal of Pattern Recognition and Artificial Intelligence, 687–719 (2009)

    Google Scholar 

  14. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  15. Passerini, A., Pontil, M., Frasconi, P.: New results on error correcting output codes of kernel machines. IEEE Transactions on Neural Networks, 45–54 (2004)

    Google Scholar 

  16. Pimenta, E., Gama, J.: A study on error correcting output codes. In: Portuguese Conference on Artificial Intelligence EPIA, pp. 218–223 (2005)

    Google Scholar 

  17. Fürnkranz, J., Hüllermeier, E., Vanderlooy, S.: Binary Decomposition Methods for Multipartite Ranking. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 359–374. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Zhu, X., Wu, X., Chen, Q.: Eliminating class noise in large datasets. In: Proceeding of the Twentieth International Conference on Machine Learning, pp. 920–927 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sáez, J.A., Galar, M., Luengo, J., Herrera, F. (2012). A First Study on Decomposition Strategies with Data with Class Noise Using Decision Trees. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28931-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28931-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28930-9

  • Online ISBN: 978-3-642-28931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics