[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Path-Oriented RDF Index for Keyword Search Query Processing

  • Conference paper
Database and Expert Systems Applications (DEXA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6861))

Included in the following conference series:

Abstract

Most of the recent approaches to keyword search employ graph structured representation of data. Answers to queries are generally sub-structures of the graph, containing one or more keywords. While finding the nodes matching keywords is relatively easy, determining the connections between such nodes is a complex problem requiring on-the-fly time consuming graph exploration. Current techniques suffer from poorly performing worst case scenario or from indexing schemes that provide little support to the discovery of connections between nodes.

In this paper, we present an indexing scheme for RDF that exposes the structural characteristics of the graph, its paths and the information on the reachability of nodes. This knowledge is exploited to expedite the retrieval of the sub-structures representing the query results. In addition, the index is organized to facilitate maintenance operations as the dataset evolves. Experimental results demonstrates the feasibility of our index that significantly improves the query execution performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bizer, C., Cyganiak, R.: D2R server: Publishing relational databases on the semantic web. In: Proc. of ISWC (2006)

    Google Scholar 

  2. Cappellari, P., De Virgilio, R., Maccioni, A., Miscione, M.: Keyword based search over semantic data in polynomial time. In: Proc. of ICDE Workshops, pp. 203–208 (2010)

    Google Scholar 

  3. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query processing on graph databases. In: Proc. of SIGMOD, pp. 857–872 (2007)

    Google Scholar 

  4. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: Xsearch: a semantic search engine for xml. In: Proc. of VLDB, pp. 45–56 (2003)

    Google Scholar 

  5. De Virgilio, R., Cappellari, P., Miscione, M.: Cluster-based exploration for effective keyword search over semantic datasets. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 205–218. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Fellbaum, C. (ed.): WordNet: an electronic lexical database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Giugno, R., Shasha, D.: Graphgrep: A fast and universal method for querying graphs. In: Proc. of ICPR, pp. 112–115 (2002)

    Google Scholar 

  8. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: ranked keyword search over xml documents. In: Proc. of SIGMOD, pp. 16–27 (2003)

    Google Scholar 

  9. He, H., Wang, H., Yang, J., Yu, P.S.: Blinks: ranked keyword searches on graphs. In: Proc. of SIGMOD, pp. 305–316 (2007)

    Google Scholar 

  10. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style keyword search over relational databases. In: Proc. of VLDB, pp. 850–861 (2003)

    Google Scholar 

  11. Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desa, R., Karambelkar, H.: Bidirectional expansion for keyword search on graph databases. In: Proc. of VLDB, pp. 505–516 (2005)

    Google Scholar 

  12. Kimelfeld, B., Sagiv, Y.: Finding and approximating top-k answers in keyword proximity search. In: Proc. of PODS, pp. 173–182 (2006)

    Google Scholar 

  13. Kolas, D., Emmons, I., Dean, M.: Efficient linked-list rdf indexing in parliament. In: 5th Int. Workshop on Scalable Semantic Web Knowledge Base Systems, SSWS (2009)

    Google Scholar 

  14. Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational databases. In: Proc. of SIGMOD, pp. 563–574 (2006)

    Google Scholar 

  15. Markowetz, A., Yang, Y., Papadias, D.: Reachability indexes for relational keyword search. In: Proc. of ICDE, pp. 1163–1166 (2009)

    Google Scholar 

  16. Neumann, T., Weikum, G.: x-rdf-3x: Fast querying, high update rates, and consistency for rdf databases. In: PVLDB, vol. 3(1), pp. 256–263 (2010)

    Google Scholar 

  17. Tian, Y., Patel, J.M.: Tale: A tool for approximate large graph matching. In: Proc. of ICDE, pp. 963–972 (2008)

    Google Scholar 

  18. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data. In: Proc. of ICDE, pp. 405–416 (2009)

    Google Scholar 

  19. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. In: PVLDB, vol. 1(1), pp. 1008–1019 (2008)

    Google Scholar 

  20. Yan, X., Yu, P.S., Han, J.: Graph indexing: A frequent structure-based approach. In: Proc. of SIGMOD, pp. 335–346 (2004)

    Google Scholar 

  21. Zhang, S., Hu, M., Yang, J.: Treepi: A novel graph indexing method. In: Proc. of ICDE, pp. 966–975 (2007)

    Google Scholar 

  22. Zhang, S., Li, S., Yang, J.: Gaddi: distance index based subgraph matching in biological networks. In: Proc. of EDBT, pp. 192–203 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cappellari, P., De Virgilio, R., Maccioni, A., Roantree, M. (2011). A Path-Oriented RDF Index for Keyword Search Query Processing. In: Hameurlain, A., Liddle, S.W., Schewe, KD., Zhou, X. (eds) Database and Expert Systems Applications. DEXA 2011. Lecture Notes in Computer Science, vol 6861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23091-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23091-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23090-5

  • Online ISBN: 978-3-642-23091-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics