[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automatic Topic Identification for Large Scale Language Modeling Data Filtering

  • Conference paper
Text, Speech and Dialogue (TSD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6836))

Included in the following conference series:

Abstract

The paper presents a module for topic identification that is embedded into a complex system for acquisition and storing large volumes of text data from the Web. The module processes each of the acquired data items and assigns keywords to them from a defined topic hierarchy that was developed for this purposes and is also described in the paper. The quality of the topic identification is evaluated in two ways - using classic precision-recall measures and also indirectly, by measuring the ASR performance of the topic-specific language models that are built using the automatically filtered data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Kanis, J., Skorkovská, L.: Comparison of different lemmatization approaches through the means of information retrieval performance. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS, vol. 6231, pp. 93–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  4. Pražák, A., Loose, Z., Psutka, J., Radová, V., Müller, L.: Four-phase re-speaker training system. In: Proceedings of SIGMAP 2011, Seville (2011)

    Google Scholar 

  5. Psutka, J., Ircing, P., Psutka, J.V., Radová, V., Byrne, W., Hajič, J., Mírovský, J., Gustman, S.: Large vocabulary ASR for spontaneous Czech in the MALACH project. In: Proceedings of Eurospeech 2003, Geneva, pp. 1821–1824 (2003)

    Google Scholar 

  6. Stolcke, A.: SRILM - an extensible language modeling toolkit. In: Proceedings of ICSLP 2002, Denver, pp. 901–904 (2002)

    Google Scholar 

  7. Vaněk, J., Psutka, J.: Gender-dependent acoustic models fusion developed for automatic subtitling of parliament meetings broadcasted by the Czech TV. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS, vol. 6231, pp. 431–438. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Švec, J., Hoidekr, J., Soutner, D., Vavruška, J.: Web text data mining for building large scale language modelling corpus. In: Habernal, I., Matoušek, V. (eds.) TSD 2011. LNCS(LNAI), vol. 6836, pp. 356–363. Springer, Heidelberg (2011)

    Google Scholar 

  9. Zajíc, Z., Machlica, L., Müller, L.: Robust statistic estimates for adaptation in the task of speech recognition. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS, vol. 6231, pp. 464–471. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skorkovská, L., Ircing, P., Pražák, A., Lehečka, J. (2011). Automatic Topic Identification for Large Scale Language Modeling Data Filtering. In: Habernal, I., Matoušek, V. (eds) Text, Speech and Dialogue. TSD 2011. Lecture Notes in Computer Science(), vol 6836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23538-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23538-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23537-5

  • Online ISBN: 978-3-642-23538-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics