Abstract
The exploration of a connected graph by multiple mobile agents has been previously studied under different conditions. A fundamental coordination problem in this context is the gathering of all agents at a single node, called the Rendezvous problem. To allow deterministic exploration, it is usually assumed that the edges incident to a node are locally ordered according to a fixed function called local orientation. We show that having a fixed local orientation is not necessary for solving rendezvous; Two or more agents having possibly distinct local orientation functions can rendezvous in all instances where rendezvous is solvable under a common local orientation function. This result is surprising and extends the known characterization of solvable instances for rendezvous and leader election in anonymous networks. On one hand, our model is more general than the anonymous port-to-port network model and on the other hand it is less powerful than qualitative model of Barrière et al. [4,9] where the agents have distinct labels. Our results hold even in the simplest model of communication using identical tokens and in fact, we show that using two tokens per agent is necessary and sufficient for solving the problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, Dordrecht (2003)
Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th Symposium on Theory of Computing (STOC 1980), pp. 82–93 (1980)
Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J., Vigna, S.: Symmetry breaking in anonymous networks: characterizations. In: Proc. 4th Israeli Symp. on Theory of Computing and Systems (ISTCS 1996), pp. 16–26 (1996)
Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot compare? In: Proc. 15th Symp. on Parallel Algorithms and Architectures (SPAA), pp. 324–332 (2003)
Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Research Logistics 48(8), 722–731 (2001)
Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Mathematics 243(1-3), 21–66 (2002)
Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms versus message passing algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006)
Chalopin, J., Godard, E., Métivier, Y., Tel, G.: About the termination detection in the asynchronous message passing model. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 200–211. Springer, Heidelberg (2007)
Chalopin, J.: Election and rendezvous with incomparable labels. Theoretical Computer Science 399(1-2), 54–70 (2008)
Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: Proc. ACM Symp. on Discrete Algorithms (SODA 2010), pp. 22–30 (2010)
Das, S., Flocchini, P., Nayak, A., Kutten, S., Santoro, N.: Map Construction of Unknown Graphs by Multiple Agents. Theoretical Computer Science 385(1-3), 34–48 (2007)
Das, S., Flocchini, P., Nayak, A., Santoro, N.: Effective elections for anonymous mobile agents. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 732–743. Springer, Heidelberg (2006)
Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)
Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of asynchronous oblivious robots on a ring. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 446–462. Springer, Heidelberg (2008)
Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics, vol. 29. North-Holland, Amsterdam (1986)
Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - characterizing the solvable cases. IEEE Transactions on Parallel and Distributed Systems 7(1), 69–89 (1996)
Yamashita, M., Kameda, T.: Leader election problem on networks in which processor identity numbers are not distinct. IEEE Transactions on Parallel and Distributed Systems 10(9), 878–887 (1999)
Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chalopin, J., Das, S. (2010). Rendezvous of Mobile Agents without Agreement on Local Orientation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-14162-1_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14161-4
Online ISBN: 978-3-642-14162-1
eBook Packages: Computer ScienceComputer Science (R0)