Abstract
Computer vision algorithms are currently developed by looking up the available operators from the literature and then arranging those operators such that the desired task is performed. This is often a tedious process which also involves testing the algorithm with different lighting conditions or at different sites. We have developed a system for the automatic generation of computer vision algorithms at interactive frame rates using GPU accelerated image processing. The user simply tells the system which object should be detected in an image sequence. Simulated evolution, in particular Genetic Programming, is used to automatically generate and test alternative computer vision algorithms. Only the best algorithms survive and eventually provide a solution to the user’s image processing task.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2007)
Koza, J.R.: Genetic Programming. In: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming - An Introduction: On The Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann Publishers, San Francisco (1998)
Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic Programming III. Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers, San Francisco (1999)
Linden, D.S.: Innovative antenna design using genetic algorithms. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems, pp. 487–510. Morgan Kaufmann, San Francisco (2002)
Koza, J.R., Al-Sakran, S.H., Jones, L.W.: Automated re-invention of six patented optical lens systems using genetic programming. In: Proc. of the 2005 Conf. on Genetic and Evolutionary Computation, pp. 1953–1960. ACM, New York (2005)
Lohmann, R.: Bionische Verfahren zur Entwicklung visueller Systeme. PhD thesis, Technische Universität Berlin, Verfahrenstechnik und Energietechnik (1991)
Harris, C., Buxton, B.: Evolving edge detectors with genetic programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming, Proc. of the 1st Annual Conf., pp. 309–314. The MIT Press, Cambridge (1996)
Rizki, M.M., Tamburino, L.A., Zmuda, M.A.: Evolving multi-resolution feature-detectors. In: Fogel, D.B., Atmar, W. (eds.) Proc. of the 2nd American Conf. on Evolutionary Programming, pp. 108–118. Evolutionary Programming Society (1993)
Andre, D.: Automatically defined features: The simultaneous evolution of 2-dimensional feature detectors and an algorithm for using them. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 477–494. The MIT Press, Cambridge (1994)
Ebner, M.: On the evolution of interest operators using genetic programming. In: Poli, R., Langdon, W.B., Schoenauer, M., Fogarty, T., Banzhaf, W. (eds.) Late Breaking Papers at EuroGP 1998: the 1st European Workshop on Genetic Programming, Paris, France, pp. 6–10. The University of Birmingham, UK (1998)
Roth, G., Levine, M.D.: Geometric primitive extraction using a genetic algorithm. IEEE Trans. on Pattern Analysis and Machine Intelligence 16(9), 901–905 (1994)
Katz, A.J., Thrift, P.R.: Generating image filters for target recognition by genetic learning. IEEE Trans. on Pattern Analysis and Machine Int. 16(9), 906–910 (1994)
Ebner, M., Zell, A.: Evolving a task specific image operator. In: Poli, R., Voigt, H.-M., Cagnoni, S., Corne, D.W., Smith, G.D., Fogarty, T.C. (eds.) EvoIASP 1999 and EuroEcTel 1999. LNCS, vol. 1596, pp. 74–89. Springer, Heidelberg (1999)
Poli, R.: Genetic programming for image analysis. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996, Proc. of the 1st Annual Conf., Stanford University, pp. 363–368. The MIT Press, Cambridge (1996)
Johnson, M.P., Maes, P., Darrell, T.: Evolving visual routines. In: Brooks, R.A., Maes, P. (eds.) Artificial Life IV, Proc. of the 4th Int. Workshop on the Synthesis and Simulation of Living Systems, pp. 198–209. The MIT Press, Cambridge (1994)
Trujillo, L., Olague, G.: Synthesis of interest point detectors through genetic programming. In: Proc. of the Genetic and Evolutionary Computation Conf., Seattle, WA, pp. 887–894. ACM, New York (2006)
Treptow, A., Zell, A.: Combining adaboost learning and evolutionary search to select features for real-time object detection. In: Proc. of the IEEE Congress on Evolutionary Computation, Portland, OR, vol. 2, pp. 2107–2113. IEEE, Los Alamitos (2004)
Heinemann, P., Streichert, F., Sehnke, F., Zell, A.: Automatic calibration of camera to world mapping in robocup using evolutionary algorithms. In: Proc. of the IEEE Int. Congress on Evolutionary Computation, San Francisco, CA, pp. 1316–1323. IEEE, Los Alamitos (2006)
Koza, J.R.: Artificial life: Spontaneous emergence of self-replicating and evolutionary self-improving computer programs. In: Langton, C.G. (ed.) Artificial Life III: SFI Studies in the Sciences of Complexity Proc., vol. XVII, pp. 225–262. Addison-Wesley, Reading (1994)
Nordin, P.: A compiling genetic programming system that directly manipulates the machine code. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 311–331. The MIT Press, Cambridge (1994)
Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Banzhaf, W., et al. (eds.) Proc. of the Genetic and Evolutionary Computation Conf., pp. 1135–1142. Morgan Kaufmann, San Francisco (1999)
Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In: Eurographics 2005, State of the Art Reports, pp. 21–51 (2005)
Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: Stream computing on graphics hardware. In: Int. Conf. on Comp. Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 777–786 (2004)
NVIDIA: NVIDIA CUDA. Compute Unified Device Architecture. V1.1 (2007)
Fung, J., Tang, F., Mann, S.: Mediated reality using computer graphics hardware for computer vision. In: Proc. of the 6th Int. Symposium on Wearable Computers, pp. 83–89. ACM, New York (2002)
Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on commodity graphics hardware. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 211–218. IEEE, Los Alamitos (2003)
Yang, R., Pollefeys, M.: A versatile stereo implementation on commodity graphics hardware. Real-Time Imaging 11(1), 7–18 (2005)
Fung, J., Mann, S.: Computer vision signal processing on graphics processing units. In: Proc. of the IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 2004, vol. 5, pp. 93–96. IEEE, Los Alamitos (2004)
Fung, J., Mann, S., Aimone, C.: OpenVIDIA: Parallel GPU computer vision. In: Proc. of the 13th annual ACM Int. Conf. on Multimedia, Singapore, pp. 849–852. ACM, New York (2005)
Akenine-Möller, T., Haines, E.: Real-Time Rendering, 2nd edn. A K Peters, Natick (2002)
Fernando, R., Kilgard, M.J.: The Cg Tutorial. In: The Definitive Guide to Programmable Real-Time Graphics. Addison-Wesley, Boston (2003)
Rost, R.J.: OpenGL Shading Language, 2nd edn. Addison-Wesley, Upper Saddle River (2006)
Ebner, M.: A real-time evolutionary object recognition system. In: Vanneschi, L., Gustafson, S., Moraglio, A., Falco, I.D., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 268–279. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ebner, M. (2009). Engineering of Computer Vision Algorithms Using Evolutionary Algorithms. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-04697-1_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04696-4
Online ISBN: 978-3-642-04697-1
eBook Packages: Computer ScienceComputer Science (R0)