Abstract
While solving a problem by an optimization algorithm, adjusting algorithm parameters have significant importance on the performance of the algorithm. A fine tuning of control parameters is required for most of the algorithms to obtain desired solutions. In this study, performance of the Artificial Bee Colony (ABC) algorithm, which simulates the foraging behaviour of a honey bee swarm, was investigated by analyzing the effect of control parameters.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
DeJong, K.: Parameter setting in eas: a 30 year perspective. Parameter Setting in Evolutionary Algorithms, 1–18 (2007)
Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)
Basturk, B., Karaboga, D.: An artificial bee colony (abc) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium 2006, Indianapolis, Indiana, USA (May 2006)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (abc) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Applied Soft Computing 8(1), 687–697 (2008)
Tereshko, V.: Reaction–diffusion model of a honeybee colony’s foraging behaviour. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 807–816. Springer, Heidelberg (2000)
Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. McGraw-Hill, New York (1999)
Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution particle swarm optimization and evolutionary algorithms on numerical benchmark problems. In: IEEE Congress on Evolutionary Computation (CEC 2004), Piscataway, New Jersey, June 2004, vol. 3, pp. 1980–1987 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Akay, B., Karaboga, D. (2009). Parameter Tuning for the Artificial Bee Colony Algorithm. In: Nguyen, N.T., Kowalczyk, R., Chen, SM. (eds) Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. ICCCI 2009. Lecture Notes in Computer Science(), vol 5796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04441-0_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-04441-0_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04440-3
Online ISBN: 978-3-642-04441-0
eBook Packages: Computer ScienceComputer Science (R0)