[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5796))

Included in the following conference series:

Abstract

While solving a problem by an optimization algorithm, adjusting algorithm parameters have significant importance on the performance of the algorithm. A fine tuning of control parameters is required for most of the algorithms to obtain desired solutions. In this study, performance of the Artificial Bee Colony (ABC) algorithm, which simulates the foraging behaviour of a honey bee swarm, was investigated by analyzing the effect of control parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. DeJong, K.: Parameter setting in eas: a 30 year perspective. Parameter Setting in Evolutionary Algorithms, 1–18 (2007)

    Google Scholar 

  2. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  3. Basturk, B., Karaboga, D.: An artificial bee colony (abc) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium 2006, Indianapolis, Indiana, USA (May 2006)

    Google Scholar 

  4. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (abc) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Applied Soft Computing 8(1), 687–697 (2008)

    Article  Google Scholar 

  6. Tereshko, V.: Reaction–diffusion model of a honeybee colony’s foraging behaviour. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 807–816. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. McGraw-Hill, New York (1999)

    Google Scholar 

  8. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution particle swarm optimization and evolutionary algorithms on numerical benchmark problems. In: IEEE Congress on Evolutionary Computation (CEC 2004), Piscataway, New Jersey, June 2004, vol. 3, pp. 1980–1987 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akay, B., Karaboga, D. (2009). Parameter Tuning for the Artificial Bee Colony Algorithm. In: Nguyen, N.T., Kowalczyk, R., Chen, SM. (eds) Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems. ICCCI 2009. Lecture Notes in Computer Science(), vol 5796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04441-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04441-0_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04440-3

  • Online ISBN: 978-3-642-04441-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics