[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Complete Iterativity for Algebras with Effects

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5728))

Included in the following conference series:

  • 621 Accesses

Abstract

Completely iterative algebras (cias) are those algebras in which recursive equations have unique solutions. In this paper we study complete iterativity for algebras with computational effects (described by a monad). First, we prove that for every analytic endofunctor on Set there exists a canonical distributive law over any commutative monad M, hence a lifting of that endofunctor to the Kleisli category of M. Then, for an arbitrary distributive law λ of an endofunctor H on Set over a monad M we introduce λ-cias. The cias for the corresponding lifting of H (called Kleisli-cias) form a full subcategory of the category of λ-cias. For various monads of interest we prove that free Kleisli-cias coincide with free λ-cias, and these free algebras are given by free algebras for H. Finally, for three concrete examples of monads we prove that Kleisli-cias and λ-cias coincide and give a characterisation of those algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Structures Comput. Sci. 16, 1085–1131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. America, P., Rutten, J.J.M.M.: Solving reflexive domain equations in a category of complete metric spaces. J. Comput. System Sci. 39(3), 343–375 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium 1973, pp. 175–230. North-Holland, Amsterdam (1975)

    Google Scholar 

  4. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log. Methods Comput. Sci. 3(4:11), 1–36 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Joyal, A.: Foncteurs analytiques et espèces de structures. In: Labelle, G., Leroux, P. (eds.) Combinatoire énumérative. Lecture Notes in Math., vol. 1234, pp. 126–159 (1986)

    Google Scholar 

  7. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kock, A.: Monads on symmetric monoidal closed categories. Arch. Math. (Basel) 21, 1–10 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kock, A.: Strong functors and monoidal monads. Arch. Math. (Basel) 23, 113–120 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103(2), 151–161 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and Comput. 196, 1–41 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Milius, S., Moss, L.S.: The category-theoretic solution of recursive program schemes. Theoret. Comput. Sci. 366, 3–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Milius, S., Palm, T., Schwencke, D.: Complete iterativity for algebras with effects, http://www.stefan-milius.eu

  14. Moggi, E.: Notions of computation and monads. Inform. and Comput. 93(1), 55–92 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nelson, E.: Iterative algebras. Theoret. Comput. Sci. 25, 67–94 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tiuryn, J.: Unique fixed points vs. least fixed points. Theoret. Comput. Sci. 12, 229–254 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milius, S., Palm, T., Schwencke, D. (2009). Complete Iterativity for Algebras with Effects. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03741-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03740-5

  • Online ISBN: 978-3-642-03741-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics