Abstract
Completely iterative algebras (cias) are those algebras in which recursive equations have unique solutions. In this paper we study complete iterativity for algebras with computational effects (described by a monad). First, we prove that for every analytic endofunctor on Set there exists a canonical distributive law over any commutative monad M, hence a lifting of that endofunctor to the Kleisli category of M. Then, for an arbitrary distributive law λ of an endofunctor H on Set over a monad M we introduce λ-cias. The cias for the corresponding lifting of H (called Kleisli-cias) form a full subcategory of the category of λ-cias. For various monads of interest we prove that free Kleisli-cias coincide with free λ-cias, and these free algebras are given by free algebras for H. Finally, for three concrete examples of monads we prove that Kleisli-cias and λ-cias coincide and give a characterisation of those algebras.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adámek, J., Milius, S., Velebil, J.: Iterative algebras at work. Math. Structures Comput. Sci. 16, 1085–1131 (2006)
America, P., Rutten, J.J.M.M.: Solving reflexive domain equations in a category of complete metric spaces. J. Comput. System Sci. 39(3), 343–375 (1989)
Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H.E., Shepherdson, J.C. (eds.) Logic Colloquium 1973, pp. 175–230. North-Holland, Amsterdam (1975)
Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Log. Methods Comput. Sci. 3(4:11), 1–36 (2007)
Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82 (1981)
Joyal, A.: Foncteurs analytiques et espèces de structures. In: Labelle, G., Leroux, P. (eds.) Combinatoire énumérative. Lecture Notes in Math., vol. 1234, pp. 126–159 (1986)
Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)
Kock, A.: Monads on symmetric monoidal closed categories. Arch. Math. (Basel) 21, 1–10 (1970)
Kock, A.: Strong functors and monoidal monads. Arch. Math. (Basel) 23, 113–120 (1972)
Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103(2), 151–161 (1968)
Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and Comput. 196, 1–41 (2005)
Milius, S., Moss, L.S.: The category-theoretic solution of recursive program schemes. Theoret. Comput. Sci. 366, 3–59 (2006)
Milius, S., Palm, T., Schwencke, D.: Complete iterativity for algebras with effects, http://www.stefan-milius.eu
Moggi, E.: Notions of computation and monads. Inform. and Comput. 93(1), 55–92 (1991)
Nelson, E.: Iterative algebras. Theoret. Comput. Sci. 25, 67–94 (1983)
Tiuryn, J.: Unique fixed points vs. least fixed points. Theoret. Comput. Sci. 12, 229–254 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Milius, S., Palm, T., Schwencke, D. (2009). Complete Iterativity for Algebras with Effects. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds) Algebra and Coalgebra in Computer Science. CALCO 2009. Lecture Notes in Computer Science, vol 5728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03741-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-03741-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03740-5
Online ISBN: 978-3-642-03741-2
eBook Packages: Computer ScienceComputer Science (R0)