Abstract
Differential Evolution (DE) algorithms belong to Evolutionary Algorithms (EAs). They are widely used for optimizing continuous functions. In this chapter we present a self-adaptive differential evolution algorithm which uses (1) a self-adaptive mechanism on control parameters F and CR, (2) more strategies during the mutation operation, (3) a population size (NP) reduction mechanism during the evolutionary process, and (4) the ε constrained method. The performance of our algorithm is reported over the set of twenty four CEC2006 constrained benchmark functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002 (CEC 2002), vol. 1, pp. 831–836 (2002)
Al-Anzia, F.S., Allahverdi, A.: A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times. European Journal of Operational Research 182(1), 80–94 (2007)
Ali, M.M.: Differential evolution with preferential crossover. European Journal of Operational Research 181(3), 1137–1147 (2007)
Ali, M.M., Törn, A.: Population Set-Based Global Optimization Algorithms: Some Modifications and Numerical Studies. Computers & Operations Research 31(10), 1703–1725 (2004)
Becerra, R.L., Coello, C.A.C.: Cultured differential evolution for constrained optimization. Computer Methods in Applied Mechanics and Engineering 195(33-36), 4303–4322 (2006)
Brest, J., Bošković, B., Greiner, S., Žumer, V., Maučec, M.S.: Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Computing - A Fusion of Foundations, Methodologies and Applications 11(7), 617–629 (2007)
Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)
Brest, J., Maučec, M.S.: Population Size Reduction for the Differential Evolution Algorithm. Applied Intelligence 29(3), 228–247 (2008)
Brest, J., Žumer, V., Maučec, M.S.: Self-adaptive Differential Evolution Algorithm in Constrained Real-Parameter Optimization. In: The 2006 IEEE Congress on Evolutionary Computation CEC 2006, pp. 919–926. IEEE Press, Los Alamitos (2006)
Brest, J., Žumer, V., Maučec, M.S.: Population size in differential evolution algorithm. Electrotechnical Review 74(1-2), 55–60 (2007) (in Slovene)
Coello Coello, C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)
Feoktistov, V.: Differential Evolution: In Search of Solutions (Springer Optimization and Its Applications). Springer, New York (2006)
Gämperle, R., Müller, S.D., Koumoutsakos, P.: A Parameter Study for Differential Evolution. In: WSEAS NNA-FSFS-EC 2002. WSEAS, Interlaken, Switzerland (2002), http://www.worldses.org/online/
Huang, V.L., Qin, A.K., Suganthan, P.N.: Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization. In: The 2006 IEEE Congress on Evolutionary Computation CEC 2006, pp. 17–24. IEEE Press, Los Alamitos (2006)
Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization. Evolutionary Computation 7(1), 19–44 (1999)
Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, N., Coello, C.A.C., Deb, K.: Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization. Tech. Rep. Report #2006005, Nanyang Technological University, Singapore, et al. (December 2005), http://www.ntu.edu.sg/home/EPNSugan
Liu, J., Lampinen, J.: Adaptive Parameter Control of Differential Evolution. In: Proceedings of the 8th International Conference on Soft Computing (MENDEL 2002), pp. 19–26 (2002)
Liu, J., Lampinen, J.: On Setting the Control Parameter of the Differential Evolution Method. In: Proceedings of the 8th International Conference on Soft Computing (MENDEL 2002), pp. 11–18 (2002)
Liu, J., Lampinen, J.: A Fuzzy Adaptive Differential Evolution Algorithm. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9(6), 448–462 (2005), http://springerlink.metapress.com/index/10.1007/s00500-004-0363-x
Mezura-Montes, E., Veláquez-Reyes, J., Coello, C.A.C.: Modified Differential Evolution for Constrained Optimization. In: The 2006 IEEE Congress on Evolutionary Computation CEC 2006, pp. 25–31. IEEE Press, Los Alamitos (2006)
Mezura-Montes, E., López-Ramírez, B.C.: Comparing Bio-Inspired Algorithms in Constrained Optimization Problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), pp. 662–666. IEEE Press, Los Alamitos (2007)
Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 225–232. ACM, New York (2005), http://doi.acm.org/10.1145/1068009.1068043
Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C., Muñoz Dávila, L.M.: Multiple Trial Vectors in Differential Evolution for Engineering Design. Engineering Optimization 39(5), 567–589 (2007)
Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)
Michalewicz, Z., Schoenauer, M.: Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation 4(1), 1–32 (1996)
Nobakhti, A., Wang, H.: A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier. Applied Soft Computing 8(1), 350–370 (2008), http://dx.doi.org/10.1016/j.asoc.2006.12.005
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, A Practical Approach to Global Optimization. Springer, Heidelberg (2005)
Qin, A.K., Suganthan, P.N.: Self-adaptive Differential Evolution Algorithm for Numerical Optimization. In: The 2005 IEEE Congress on Evolutionary Computation CEC 2005, pp. 1785–1791. IEEE Press, Los Alamitos (2005)
Rönkkönen, J., Kukkonen, S., Price, K.V.: Real-Parameter Optimization with Differential Evolution. In: The 2005 IEEE Congress on Evolutionary Computation CEC 2005, pp. 506–513. IEEE Press, Los Alamitos (2005)
Storn, R.: System Design by Constraint Adaptation and Differential Evolution. IEEE Transactions on Evolutionary Computation 3(1), 22–34 (1999)
Storn, R., Price, K.: Differential Evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, Berkeley, CA (1995), citeseer.ist.psu.edu/article/storn95differential.html
Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)
Sun, J., Zhang, Q., Tsang, E.P.K.: DE/EDA: A New Evolutionary Algorithm for Global Optimization. Information Sciences 169, 249–262 (2004)
Takahama, T., Sakai, S.: Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation Feasible Elites. In: The 2006 IEEE Congress on Evolutionary Computation CEC 2006, pp. 17–24. IEEE Press, Los Alamitos (2006)
Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Computing - A Fusion of Foundations, Methodologies and Applications 10(8), 673–686 (2006)
Wang, Y., Cai, Z., Zhou, Y., Zeng, W.: An Adaptive tradeoff Model for Constrained Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 12(1), 80–92 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Brest, J. (2009). Constrained Real-Parameter Optimization with ε -Self-Adaptive Differential Evolution. In: Mezura-Montes, E. (eds) Constraint-Handling in Evolutionary Optimization. Studies in Computational Intelligence, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00619-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-00619-7_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00618-0
Online ISBN: 978-3-642-00619-7
eBook Packages: EngineeringEngineering (R0)