Abstract
Process Mining is a technique for extracting process models from execution logs. This is particularly useful in situations where people have an idealized view of reality. Real-life processes turn out to be less structured than people tend to believe. Unfortunately, traditional process mining approaches have problems dealing with unstructured processes. The discovered models are often “spaghetti-like”, showing all details without distinguishing what is important and what is not. This paper proposes a new process mining approach to overcome this problem. The approach is configurable and allows for different faithfully simplified views of a particular process. To do this, the concept of a roadmap is used as a metaphor. Just like different roadmaps provide suitable abstractions of reality, process models should provide meaningful abstractions of operational processes encountered in domains ranging from healthcare and logistics to web services and public administration.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)
van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)
Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Sixth International Conference on Extending Database Technology, pp. 469–483 (1998)
Badouel, E., Bernardinello, L., Darondeau, P.: The Synthesis Problem for Elementary Net Systems is NP-complete. Theoretical Computer Science 186(1-2), 107–134 (1997)
Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)
Datta, A.: Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic Approaches. Information Systems Research 9(3), 275–301 (1998)
van Dongen, B.F., van der Aalst, W.M.P.: Multi-Phase Process Mining: Building Instance Graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)
van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: A New Era in Process Mining Tool Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)
van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)
Herbst, J.: A Machine Learning Approach to Workflow Management. In: López de Mántaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 183–194. Springer, Heidelberg (2000)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)
de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Mining: A Basic Approach and its Challenges. In: Bussler, C., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 203–215. Springer, Heidelberg (2006)
Pothen, A., Simon, H.D., Liou, K.: Partitioning sparse matrics with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)
Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Günther, C.W., van der Aalst, W.M.P. (2007). Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds) Business Process Management. BPM 2007. Lecture Notes in Computer Science, vol 4714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75183-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-75183-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75182-3
Online ISBN: 978-3-540-75183-0
eBook Packages: Computer ScienceComputer Science (R0)