[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

k-Anonymization with Minimal Loss of Information

  • Conference paper
Algorithms – ESA 2007 (ESA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4698))

Included in the following conference series:

Abstract

The technique of k-anonymization allows the releasing of databases that contain personal information while ensuring some degree of individual privacy. Anonymization is usually performed by generalizing database entries. We formally study the concept of generalization, and propose two information-theoretic measures for capturing the amount of information that is lost during the anonymization process. Those measures are more general and more accurate than those proposed in [19] and [1]. We study the problem of achieving k-anonymity with minimal loss of information. We prove that it is NP-hard and study polynomial approximations for the optimal solution. Our first algorithm gives an approximation guarantee of O(ln k) – an improvement over the best-known O(k)-approximation of [1]. As the running time of the algorithm is O(n 2k), we also show how to adapt the algorithm of [1] in order to obtain an O(k)-approximation algorithm that is polynomial in both n and k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363. Springer, Heidelberg (2004)

    Google Scholar 

  2. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the kth-ranked element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027. Springer, Heidelberg (2004)

    Google Scholar 

  3. Agrawal, D., Aggarwal, C.: On the design and quantification of privacy preserving data mining lgorithms. In: PODS (2001)

    Google Scholar 

  4. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD (2000)

    Google Scholar 

  5. Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving OLAP. In: SIGMOD (2005)

    Google Scholar 

  6. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: The SuLQ framework. In: PODS (2005)

    Google Scholar 

  7. Chawla, S., Dwork, C., McSherry, F., Smith, A., Wee, H.: Toward privacy in public databases. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378. Springer, Heidelberg (2005)

    Google Scholar 

  8. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4(3), 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. DeWaal, A.G., Willenborg, L.C.R.J.: Information loss through global recoding and local suppression. Netherlands Official Statistics, Special issue on SDC 14, 17–20 (1999)

    Google Scholar 

  10. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS (2003)

    Google Scholar 

  11. Dwork, C., Nissim, K.: Privacy-preserving data mining on vertically partitioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)

    Google Scholar 

  12. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: PODS (2003)

    Google Scholar 

  13. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027. Springer, Heidelberg (2004)

    Google Scholar 

  14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: STOC (1987)

    Google Scholar 

  15. Johnson, D.S.: Approximation algorithms for combinatorial problems. JCSS 9, 256–278 (1974)

    MATH  Google Scholar 

  16. Kenthapadi, K., Mishra, N., Nissim, K.: Simulatable auditing. In: PODS (2005)

    Google Scholar 

  17. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing boolean attributes. JCSS 6, 244–253 (2003)

    MathSciNet  Google Scholar 

  18. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15(3), 177–206 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS (2004)

    Google Scholar 

  20. Samarati, P.: Protecting respondent’s privacy in microdata release. TKDE 13, 1010–1027 (2001)

    Google Scholar 

  21. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (abstract). In: PODS (1998)

    Google Scholar 

  22. Sweeney, L.: k-Anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Willenborg, L., DeWaal, T.: Elements of Statistical Disclosure Control. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  24. Yao, A.: How to generate and exchange secrets. In: FOCS (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Michael Hoffmann Emo Welzl

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gionis, A., Tassa, T. (2007). k-Anonymization with Minimal Loss of Information. In: Arge, L., Hoffmann, M., Welzl, E. (eds) Algorithms – ESA 2007. ESA 2007. Lecture Notes in Computer Science, vol 4698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75520-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75520-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75519-7

  • Online ISBN: 978-3-540-75520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics