[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Shape-Guided Deformable Model with Evolutionary Algorithm Initialization for 3D Soft Tissue Segmentation

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

We present a novel method for the segmentation of volumetric images, which is especially suitable for highly variable soft tissue structures. Core of the algorithm is a statistical shape model (SSM) of the structure of interest. A global search with an evolutionary algorithm is employed to detect suitable initial parameters for the model, which are subsequently optimized by a local search similar to the Active Shape mechanism. After that, a deformable mesh with the same topology as the SSM is used for the final segmentation: While external forces strive to maximize the posterior probability of the mesh given the local appearance around the boundary, internal forces governed by tension and rigidity terms keep the shape similar to the underlying SSM. To prevent outliers and increase robustness, we determine the applied external forces by an algorithm for optimal surface detection with smoothness constraints. The approach is evaluated on 54 CT images of the liver and reaches an average surface distance of 1.6 ±0.5 mm in comparison to manual reference segmentations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models – their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  • Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  • Shen, D., Davatzikos, C.: An adaptive-focus deformable model using statistical and geometric information. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 906–913 (2000)

    Article  Google Scholar 

  • Weese, J., Kaus, M., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001)

    Google Scholar 

  • Soler, L., Delingette, H., Malandain, G., Montagnat, J., Ayache, N., et al.: Fully automatic anatomical, pathological, and functional segmentation from ct scans for hepatic surgery. In: Proc. SPIE Medical Imaging, pp. 246–255 (2000)

    Google Scholar 

  • Hill, A., Taylor, C.J., Cootes, T.F.: Object recognition by flexible template matching using genetic algorithms. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 852–856. Springer, Heidelberg (1992)

    Google Scholar 

  • de Bruijne, M., Nielsen, M.: Shape particle filtering for image segmentation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 168–175. Springer, Heidelberg (2004)

    Google Scholar 

  • Subsol, G., Thirion, J.P., Ayache, N.: A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas. Medical Image Analysis 2(1), 37–60 (1998)

    Article  Google Scholar 

  • Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Medical Imaging 21(9), 1151–1166 (2002)

    Article  Google Scholar 

  • Kaus, M.R., Pekar, V., Lorenz, C., Truyen, R., Lobregt, S., Weese, J.: Automated 3-D PDM construction from segmented images using deformable models. IEEE Trans. Medical Imaging 22(8), 1005–1013 (2003)

    Article  Google Scholar 

  • Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: 3D statistical shape models using direct optimisation of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  • Heimann, T., Wolf, I., Meinzer, H.P.: Optimal landmark distributions for statistical shape model construction. In: Proc. SPIE Medical Imaging: Image Processing. vol. 6144, pp. 518–528 (2006)

    Google Scholar 

  • de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Adapting active shape models for 3D segmentation of tubular structures in medical images. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 136–147. Springer, Heidelberg (2003)

    Google Scholar 

  • Kittler, J., Alkoot, F.M.: Moderating k-NN classifiers. Pattern Analysis & Applications 5(3), 326–332 (2002)

    Article  Google Scholar 

  • Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)

    MATH  Google Scholar 

  • Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley & Sons, Inc, New York (1995)

    Google Scholar 

  • Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  • Behiels, G., Maes, F., Vandermeulen, D., Suetens, P.: Evaluation of image features and search strategies for segmentation of bone structures in radiographs using active shape models. Medical Image Analysis 6(1), 47–62 (2002)

    Article  Google Scholar 

  • Li, K., Millington, S., Wu, X., Chen, D.Z., Sonka, M.: Simultaneous segmentation of multiple closed surfaces using optimal graph searching. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 406–417. Springer, Heidelberg (2005)

    Google Scholar 

  • Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  • Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics 28, 100–108 (1979)

    Article  MATH  Google Scholar 

  • Lamecker, H., Lange, T., Seebass, M.: Segmentation of the liver using a 3D statistical shape model. Technical report, Zuse Institute, Berlin, Germany (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Heimann, T., Münzing, S., Meinzer, HP., Wolf, I. (2007). A Shape-Guided Deformable Model with Evolutionary Algorithm Initialization for 3D Soft Tissue Segmentation. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics