Abstract
We present a novel method for the segmentation of volumetric images, which is especially suitable for highly variable soft tissue structures. Core of the algorithm is a statistical shape model (SSM) of the structure of interest. A global search with an evolutionary algorithm is employed to detect suitable initial parameters for the model, which are subsequently optimized by a local search similar to the Active Shape mechanism. After that, a deformable mesh with the same topology as the SSM is used for the final segmentation: While external forces strive to maximize the posterior probability of the mesh given the local appearance around the boundary, internal forces governed by tension and rigidity terms keep the shape similar to the underlying SSM. To prevent outliers and increase robustness, we determine the applied external forces by an algorithm for optimal surface detection with smoothness constraints. The approach is evaluated on 54 CT images of the liver and reaches an average surface distance of 1.6 ±0.5 mm in comparison to manual reference segmentations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models – their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)
Shen, D., Davatzikos, C.: An adaptive-focus deformable model using statistical and geometric information. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 906–913 (2000)
Weese, J., Kaus, M., Lorenz, C., Lobregt, S., Truyen, R., Pekar, V.: Shape constrained deformable models for 3D medical image segmentation. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 380–387. Springer, Heidelberg (2001)
Soler, L., Delingette, H., Malandain, G., Montagnat, J., Ayache, N., et al.: Fully automatic anatomical, pathological, and functional segmentation from ct scans for hepatic surgery. In: Proc. SPIE Medical Imaging, pp. 246–255 (2000)
Hill, A., Taylor, C.J., Cootes, T.F.: Object recognition by flexible template matching using genetic algorithms. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 852–856. Springer, Heidelberg (1992)
de Bruijne, M., Nielsen, M.: Shape particle filtering for image segmentation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 168–175. Springer, Heidelberg (2004)
Subsol, G., Thirion, J.P., Ayache, N.: A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas. Medical Image Analysis 2(1), 37–60 (1998)
Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Medical Imaging 21(9), 1151–1166 (2002)
Kaus, M.R., Pekar, V., Lorenz, C., Truyen, R., Lobregt, S., Weese, J.: Automated 3-D PDM construction from segmented images using deformable models. IEEE Trans. Medical Imaging 22(8), 1005–1013 (2003)
Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: 3D statistical shape models using direct optimisation of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)
Heimann, T., Wolf, I., Meinzer, H.P.: Optimal landmark distributions for statistical shape model construction. In: Proc. SPIE Medical Imaging: Image Processing. vol. 6144, pp. 518–528 (2006)
de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Adapting active shape models for 3D segmentation of tubular structures in medical images. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 136–147. Springer, Heidelberg (2003)
Kittler, J., Alkoot, F.M.: Moderating k-NN classifiers. Pattern Analysis & Applications 5(3), 326–332 (2002)
Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)
Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley & Sons, Inc, New York (1995)
Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)
Behiels, G., Maes, F., Vandermeulen, D., Suetens, P.: Evaluation of image features and search strategies for segmentation of bone structures in radiographs using active shape models. Medical Image Analysis 6(1), 47–62 (2002)
Li, K., Millington, S., Wu, X., Chen, D.Z., Sonka, M.: Simultaneous segmentation of multiple closed surfaces using optimal graph searching. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 406–417. Springer, Heidelberg (2005)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)
Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics 28, 100–108 (1979)
Lamecker, H., Lange, T., Seebass, M.: Segmentation of the liver using a 3D statistical shape model. Technical report, Zuse Institute, Berlin, Germany (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Heimann, T., Münzing, S., Meinzer, HP., Wolf, I. (2007). A Shape-Guided Deformable Model with Evolutionary Algorithm Initialization for 3D Soft Tissue Segmentation. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-73273-0_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73272-3
Online ISBN: 978-3-540-73273-0
eBook Packages: Computer ScienceComputer Science (R0)