[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Reduction of Algebraic Parametric Systems by Rectification of Their Affine Expanded Lie Symmetries

  • Conference paper
Algebraic Biology (AB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4545))

Included in the following conference series:

  • 640 Accesses

Abstract

Lie group theory states that knowledge of a m-parameters solvable group of symmetries of a system of ordinary differential equations allows to reduce by m the number of equations. We apply this principle by finding some affine derivations that induces expanded Lie point symmetries of considered system. By rewriting original problem in an invariant coordinates set for these symmetries, we reduce the number of involved parameters. We present an algorithm based on this standpoint whose arithmetic complexity is quasi-polynomial in input’s size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Murray, J.D.: Mathematical Biology. Interdisciplinary Applied Mathematics, vol. 17. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Khanin, R.: Dimensional Analysis in Computer Algebra. In: Mourrain, B. (ed.) Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, London, Ontario, Canada, ACM, pp. 201–208. ACM press, New York (2001)

    Chapter  Google Scholar 

  3. Bluman, G., Anco, S.: Symmetry and Integration Methods for Differential Equations. Applied Mathematical Sciences, vol. 154. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  4. Olver, P.J.: Applications of Lie groups to differential equations, 2nd edn. Graduate Texts in Mathematics, vol. 107. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  5. Gatermann, K.: Computer algebra methods for equivariant dynamical systems. Lecture Notes in Mathematics, vol. 1728. Springer, New York (2000)

    MATH  Google Scholar 

  6. Hubert, É., Kogan, I.: Rational invariants of an algebraic group action. Construction and rewriting. Journal of Symbolic Computation 42(1-2), 203–217 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burde, G.I.: Expanded Lie group transformations and similarity reductions of differential equations. In: Nikitin, A.G., Boyko, V.M., Popovych, R.O. (eds.) Symmetry in nonlinear mathematical physics Part I. In: Proceedings of Institute of Mathematics of NAS of Ukraine, Kiev, Ukraine, vol 43, pp. 93–101 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hirokazu Anai Katsuhisa Horimoto Temur Kutsia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sedoglavic, A. (2007). Reduction of Algebraic Parametric Systems by Rectification of Their Affine Expanded Lie Symmetries. In: Anai, H., Horimoto, K., Kutsia, T. (eds) Algebraic Biology. AB 2007. Lecture Notes in Computer Science, vol 4545. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73433-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73433-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73432-1

  • Online ISBN: 978-3-540-73433-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics