Abstract
We describe a new method for conducting scalar multiplication on a non-supersingular elliptic curve in characteristic two. The idea is to replace all point doublings in the double-and-add algorithm with a faster operation called point halving.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Morain, F., Olivos, J.: Speeding up computations on an elliptic curve using addition-subtraction chains. Theoretical Informatics and Applications 24(6), 531–544 (1990)
Zhang, C.N.: An improved binary algorithm for RSA. Computers and Mathematics with Applications 25, 15–24 (1993)
Standard Specifications for Public Key Cryptography, Annex A. Number Theoretic Background. IEEE Standards Department (August 20, 1998)
Koblitz, N.: CM-Curves with Good Cryptographic Properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)
Meier, W., Staffelbach, O.: Efficient Multiplication on Certain Nonsupersingular Elliptic Curves. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 333–344. Springer, Heidelberg (1993)
Muller, V.: Fast Multiplication on Elliptic Curves over Small Fields of Characteristic Two. Journal of Cryptology, 219–234 (1998)
Silverman, J.: The arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106. Springer, Heidelberg (1986)
Cohen, G., Lobstein, A., Naccache, D., Zemor, G.: How to Improve an Exponetiation Black-box. Technical Report AP03-1998, Gemplus’ Corporate Product R&D Division
Muller, V.: Efficient Algorithms for Multiplication on Elliptic Curves TI-9/97,1997, Institut fur theoretische Informatik
Menezes, A.J.: Elliptic Curve Public Key Cryptosystems. Kluwer Acedemic Publishers, Dordrecht
Schroeppel, R., Orman, H., O’Malley, S., Spatscheck, O.: Fast Key Exchange with Elliptic Curve Systems. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 43–56. Springer, Heidelberg (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Knudsen, E.W. (1999). Elliptic Scalar Multiplication Using Point Halving. In: Lam, KY., Okamoto, E., Xing, C. (eds) Advances in Cryptology - ASIACRYPT’99. ASIACRYPT 1999. Lecture Notes in Computer Science, vol 1716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48000-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-48000-6_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66666-0
Online ISBN: 978-3-540-48000-6
eBook Packages: Springer Book Archive