[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Model Evolution Calculus

  • Conference paper
Automated Deduction – CADE-19 (CADE 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2741))

Included in the following conference series:

Abstract

The DPLL procedure is the basis of some of the most successful propositional satisfiability solvers to date. Although originally devised as a proof-procedure for first-order logic, it has been used almost exclusively for propositional logic so far because of its highly inefficient treatment of quantifiers, based on instantiation into ground formulas. The recent FDPLL calculus by Baumgartner was the first successful attempt to lift the procedure to the first-order level without resorting to ground instantiations. FDPLL lifts to the first-order case the core of the DPLL procedure, the splitting rule, but ignores other aspects of the procedure that, although not necessary for completeness, are crucial for its effectiveness in practice. In this paper, we present a new calculus loosely based on FDPLL that lifts these aspects as well. In addition to being a more faithful lifting of the DPLL procedure, the new calculus contains a more systematic treatment of universal literals, one of FDPLL’s optimizations, and so has the potential of leading to much faster implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bachmair, L., Ganzinger, H.: Equational Reasoning in Saturation-Based Theorem Proving. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction. A Basis for Applications, vol. I, ch. 11, Kluwer, Dordrecht (1998)

    Google Scholar 

  2. Baumgartner, P.: Hyper Tableaux—The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Baumgartner, P.: FDPLL—A First-Order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831. Springer, Heidelberg (2000)

    Google Scholar 

  4. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. Fachberichte Informatik 1–2003, Universität Koblenz-Landau (2003)

    Google Scholar 

  5. Bibel, W.: Automated Theorem Proving. Vieweg (1982)

    Google Scholar 

  6. Billon, J.-P.: The Disconnection Method. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS (LNAI), vol. 1071, pp. 110–126. Springer, Heidelberg (1996)

    Google Scholar 

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ganzinger, H., Korovin, K.: New directions in instance-based theorem proving. In: LICS - Logics in Computer Science (2003) (to appear)

    Google Scholar 

  10. Hooker, J.N., Rago, G., Chandru, V., Shrivastava, A.: Partial Instantiation Methods for Inference in First Order Logic. Journal of Automated Reasoning 28, 371–396 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lee, S.-J., Plaisted, D.: Eliminating Duplicates with the Hyper-Linking Strategy. Journal of Automated Reasoning 9, 25–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Letz, R., Mayr, K., Goller, C.: Controlled Integrations of the Cut Rule into Connection Tableau Calculi. Journal of Automated Reasoning 13 (1994)

    Google Scholar 

  13. Letz, R., Stenz, G.: Proof and Model Generation with Disconnection Tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, p. 142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Plaisted, D.A., Zhu, Y.: Ordered Semantic Hyper Linking. Journal of Automated Reasoning 25(3), 167–217 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stenz, G.: DCTP 1.2 - System Abstract. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 335–340. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, p. 308. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Yahya, A., Plaisted, D.A.: Ordered Semantic Hyper-Tableaux. Journal of Automated Reasoning 29(1), 17–57 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang, H., Stickel, M.E.: An efficient algorithm for unit propagation. In: Proc. of AIMATH 1996 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baumgartner, P., Tinelli, C. (2003). The Model Evolution Calculus. In: Baader, F. (eds) Automated Deduction – CADE-19. CADE 2003. Lecture Notes in Computer Science(), vol 2741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45085-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45085-6_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40559-7

  • Online ISBN: 978-3-540-45085-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics