[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Variations of Diffie-Hellman Problem

  • Conference paper
Information and Communications Security (ICICS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2836))

Included in the following conference series:

Abstract

This paper studies various computational and decisional Diffie-Hellman problems by providing reductions among them in the high granularity setting. We show that all three variations of computational Diffie-Hellman problem: square Diffie-Hellman problem, inverse Diffie-Hellman problem and divisible Diffie-Hellman problem, are equivalent with optimal reduction. Also, we are considering variations of the decisional Diffie-Hellman problem in single sample and polynomial samples settings, and we are able to show that all variations are equivalent except for the argument DDH \(\Leftarrow\) SDDH. We are not able to prove or disprove this statement, thus leave an interesting open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biham, E., Boneh, D., Reingold, O.: Breaking generalized Diffie Hellman modulo a composite is no easier than factoring. Information Processing Letters 70, 83–87 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bresson, E., Chevassut, O., Pointcheval, D.: The group diffie-hellman problems. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 325–338. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Burmester, M., Desmedt, Y., Seberry, J.: Equitable key escrow with limited time span (or, how to enforce time expiration cryptographically). In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 380–391. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Beaver, D.: Foundations of Secure Interactive Computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

    Google Scholar 

  5. Boneh, D.: The Decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous Byzantine agreement using cryptography. In: Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, Portland, Oregon, ACM, New York (2000); Full version appeared as Cryptology ePrint Archive Report 2000/034 (2000/7/7)

    Google Scholar 

  7. Camenisch, J., Maurer, U., Stadler, M.: Digital payment systems with passive anonymity evoking trustees. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 33–43. Springer, Heidelberg (1996)

    Google Scholar 

  8. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Google Scholar 

  9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory IT 2(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  10. Handschuh, H., Tsiounis, Y., Yung, M.: Decision oracles are equivalent to matching oracles. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, p. 276. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. McCurley, K.S.: The discrete logarithm problem. In: Pomerance, C. (ed.) Cryptology and Computational Number Theory. Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74. American Mathematical Society, Providence (1990)

    Google Scholar 

  12. Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)

    Google Scholar 

  13. Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Maurer, U.M., Wolf, S.: Diffie-Hellman, Decision Diffie-Hellman, and discrete logarithms. In: IEEE Symposium on Information Theory, Cambridge, USA, August 1998, p. 327 (1998)

    Google Scholar 

  15. Naor, M., Reingold, O.: Number theoretic constructions of efficient pseudorandom functions. In: 38th Symposium on Foundations of Computer Science (FOCS), pp. 458–467. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  16. Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Pfitzmann, B., Sadeghi, A.: Anonymous fingerprinting with direct non-repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–414. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

  19. Sadeghi, A.-R., Steiner, M.: Assumptions Related to Discrete Logarithms: Why Subtleties Make a Real Difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 243–260. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Transactions on Parallel and Distributed Systems 11(8), 769–780 (2000)

    Article  Google Scholar 

  21. Wolf, S.: Information theoretically and Computationally Secure Key Agreement in Cryptography. PhD thesis, ETH Zurich (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bao, F., Deng, R.H., Zhu, H. (2003). Variations of Diffie-Hellman Problem. In: Qing, S., Gollmann, D., Zhou, J. (eds) Information and Communications Security. ICICS 2003. Lecture Notes in Computer Science, vol 2836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39927-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39927-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20150-2

  • Online ISBN: 978-3-540-39927-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics