Abstract
This paper studies various computational and decisional Diffie-Hellman problems by providing reductions among them in the high granularity setting. We show that all three variations of computational Diffie-Hellman problem: square Diffie-Hellman problem, inverse Diffie-Hellman problem and divisible Diffie-Hellman problem, are equivalent with optimal reduction. Also, we are considering variations of the decisional Diffie-Hellman problem in single sample and polynomial samples settings, and we are able to show that all variations are equivalent except for the argument DDH \(\Leftarrow\) SDDH. We are not able to prove or disprove this statement, thus leave an interesting open problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biham, E., Boneh, D., Reingold, O.: Breaking generalized Diffie Hellman modulo a composite is no easier than factoring. Information Processing Letters 70, 83–87 (1999)
Bresson, E., Chevassut, O., Pointcheval, D.: The group diffie-hellman problems. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 325–338. Springer, Heidelberg (2003)
Burmester, M., Desmedt, Y., Seberry, J.: Equitable key escrow with limited time span (or, how to enforce time expiration cryptographically). In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 380–391. Springer, Heidelberg (1998)
Beaver, D.: Foundations of Secure Interactive Computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)
Boneh, D.: The Decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)
Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous Byzantine agreement using cryptography. In: Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing, Portland, Oregon, ACM, New York (2000); Full version appeared as Cryptology ePrint Archive Report 2000/034 (2000/7/7)
Camenisch, J., Maurer, U., Stadler, M.: Digital payment systems with passive anonymity evoking trustees. In: Martella, G., Kurth, H., Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 33–43. Springer, Heidelberg (1996)
Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory IT 2(6), 644–654 (1976)
Handschuh, H., Tsiounis, Y., Yung, M.: Decision oracles are equivalent to matching oracles. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, p. 276. Springer, Heidelberg (1999)
McCurley, K.S.: The discrete logarithm problem. In: Pomerance, C. (ed.) Cryptology and Computational Number Theory. Proceedings of Symposia in Applied Mathematics, vol. 42, pp. 49–74. American Mathematical Society, Providence (1990)
Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996)
Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg (1998)
Maurer, U.M., Wolf, S.: Diffie-Hellman, Decision Diffie-Hellman, and discrete logarithms. In: IEEE Symposium on Information Theory, Cambridge, USA, August 1998, p. 327 (1998)
Naor, M., Reingold, O.: Number theoretic constructions of efficient pseudorandom functions. In: 38th Symposium on Foundations of Computer Science (FOCS), pp. 458–467. IEEE Computer Society Press, Los Alamitos (1997)
Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)
Pfitzmann, B., Sadeghi, A.: Anonymous fingerprinting with direct non-repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–414. Springer, Heidelberg (2000)
Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)
Sadeghi, A.-R., Steiner, M.: Assumptions Related to Discrete Logarithms: Why Subtleties Make a Real Difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 243–260. Springer, Heidelberg (2001)
Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Transactions on Parallel and Distributed Systems 11(8), 769–780 (2000)
Wolf, S.: Information theoretically and Computationally Secure Key Agreement in Cryptography. PhD thesis, ETH Zurich (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bao, F., Deng, R.H., Zhu, H. (2003). Variations of Diffie-Hellman Problem. In: Qing, S., Gollmann, D., Zhou, J. (eds) Information and Communications Security. ICICS 2003. Lecture Notes in Computer Science, vol 2836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39927-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-540-39927-8_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20150-2
Online ISBN: 978-3-540-39927-8
eBook Packages: Springer Book Archive