Abstract
This paper deals with the problem of safety verification of non-linear hybrid systems. We start from a classical method that uses interval arithmetic to check whether trajectories can move over the boundaries in a rectangular grid. We put this method into an abstraction refinement framework and improve it by developing an additional refinement step that employs constraint propagation to add information to the abstraction without introducing new grid elements. Moreover, the resulting method allows switching conditions, initial states and unsafe states to be described by complex constraints instead of sets that correspond to grid elements. Nevertheless, the method can be easily implemented since it is based on a well-defined set of constraints, on which one can run any constraint propagation based solver. First tests of such an implementation are promising.
This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid systems via predicate abstraction. In: Tomlin and Greenstreet [36]
Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)
Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)
Benhamou, F.: Heterogeneous constraint solving. In: Proc. of the Fifth International Conference on Algebraic and Logic Programming (1996)
Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(Intervals) revisited. In: International Symposium on Logic Programming, Ithaca, NY, USA, pp. 124–138. MIT Press, Cambridge (1994)
Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer and Boolean constraints. Journal of Logic Programming 32(1), 1–24 (1997)
Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, Wien (1998)
Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager and van Schuppen [37], pp. 76–90
Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. International Journal of Foundations of Computer Science 14(4) (2003)
Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
Cleary, J.G.: Logical arithmetic. Future Computing Systems 2(2), 125–149 (1987)
Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation 12, 299–328 (1991) Also in [7]
Davis, E.: Constraint propagation with interval labels. Artificial Intelligence 32(3), 281–331 (1987)
Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683. Springer, Heidelberg (1999)
Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HyTech: hybrid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790. Springer, Heidelberg (2000)
Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata. Journal of Computer and System Sciences 57, 94–124 (1998)
Hickey, T., Wittenberg, D.: Rigorous modeling of hybrid systems using interval arithmetic constraints. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993. Springer, Heidelberg (2004)
Hickey, T.J.: smathlib, http://interval.sourceforge.net/interval/C/smathlib/README.html
Hickey, T.J.: Analytic constraint solving and interval arithmetic. In: Proceedings of the 27th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (2000)
Hickey, T.J.: Metalevel interval arithmetic and verifiable constraint solving. Journal of Functional and Logic Programming 2001(7) (2001)
Hickey, T.J., van Emden, M.H., Wu, H.: A unified framework for interval constraint and interval arithmetic. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 250–264. Springer, Heidelberg (1998)
Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Berlin (2001)
Lhomme, O.: Consistency techniques for numeric CSPs. In: Proc. 13th Intl. Joint Conf. on Artificial Intelligence (1993)
Lhomme, O., Gotlieb, A., Rueher, M.: Dynamic optimization of interval narrowing algorithms. Journal of Logic Programming 37(1–3), 165–183 (1998)
Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)
Milner, R.: An algebraic definition of simulation between programs. In: Proc. of the 2nd International Joint Conference on Artificial Intelligence, pp. 481–489 (1971)
Preußig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.: An algorithm for the approximative analysis of rectangular automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486. Springer, Heidelberg (1998)
Preußig, J., Stursberg, O., Kowalewski, S.: Reachability analysis of a class of switched continuous systems by integrating rectangular approximation and rectangular analysis. In: Vaandrager and van Schuppen [37]
Ratschan, S.: Continuous first-order constraint satisfaction. In: Calmet, J., Benhamou, B., Caprotti, O., Hénocque, L., Sorge, V. (eds.) AISC 2002 and Calculemus 2002. LNCS (LNAI), vol. 2385, pp. 181–195. Springer, Heidelberg (2002)
Ratschan, S.: Rsolver (2004), http://www.mpi-sb.mpg.de/~ratschan/rsolver Software package
Ratschan, S., She, Z.: Hsolver (2004), http://www.mpi-sb.mpg.de/~ratschan/hsolver Software package
Stursberg, O., Kowalewski, S.: Analysis of controlled hybrid processing systems based on approximation by timed automata using interval arithmetic. In: Proceedings of the 8th IEEE Mediterranean Conference on Control and Automation, MED 2000 (2000)
Stursberg, O., Kowalewski, S., Engell, S.: On the generation of timed discrete approximations for continuous systems. Mathematical and Computer Models of Dynamical Systems 6, 51–70 (2000)
Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and hybrid automata as approximations of continuous systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273, pp. 361–377. Springer, Heidelberg (1997)
Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin and Greenstreet [36]
Tomlin, C.J., Greenstreet, M.R. (eds.): HSCC 2002. LNCS, vol. 2289. Springer, Heidelberg (2002)
Vaandrager, F.W., van Schuppen, J.H. (eds.): HSCC 1999. LNCS, vol. 1569. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ratschan, S., She, Z. (2005). Safety Verification of Hybrid Systems by Constraint Propagation Based Abstraction Refinement. In: Morari, M., Thiele, L. (eds) Hybrid Systems: Computation and Control. HSCC 2005. Lecture Notes in Computer Science, vol 3414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31954-2_37
Download citation
DOI: https://doi.org/10.1007/978-3-540-31954-2_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25108-8
Online ISBN: 978-3-540-31954-2
eBook Packages: Computer ScienceComputer Science (R0)