[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Safety Verification of Hybrid Systems by Constraint Propagation Based Abstraction Refinement

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3414))

Included in the following conference series:

  • 2905 Accesses

Abstract

This paper deals with the problem of safety verification of non-linear hybrid systems. We start from a classical method that uses interval arithmetic to check whether trajectories can move over the boundaries in a rectangular grid. We put this method into an abstraction refinement framework and improve it by developing an additional refinement step that employs constraint propagation to add information to the abstraction without introducing new grid elements. Moreover, the resulting method allows switching conditions, initial states and unsafe states to be described by complex constraints instead of sets that correspond to grid elements. Nevertheless, the method can be easily implemented since it is based on a well-defined set of constraints, on which one can run any constraint propagation based solver. First tests of such an implementation are promising.

This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid systems via predicate abstraction. In: Tomlin and Greenstreet [36]

    Google Scholar 

  2. Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Benhamou, F.: Heterogeneous constraint solving. In: Proc. of the Fifth International Conference on Algebraic and Logic Programming (1996)

    Google Scholar 

  5. Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP(Intervals) revisited. In: International Symposium on Logic Programming, Ithaca, NY, USA, pp. 124–138. MIT Press, Cambridge (1994)

    Google Scholar 

  6. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer and Boolean constraints. Journal of Logic Programming 32(1), 1–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, Wien (1998)

    MATH  Google Scholar 

  8. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager and van Schuppen [37], pp. 76–90

    Google Scholar 

  9. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. International Journal of Foundations of Computer Science 14(4) (2003)

    Google Scholar 

  10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Cleary, J.G.: Logical arithmetic. Future Computing Systems 2(2), 125–149 (1987)

    Google Scholar 

  12. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation 12, 299–328 (1991) Also in [7]

    Article  MATH  MathSciNet  Google Scholar 

  13. Davis, E.: Constraint propagation with interval labels. Artificial Intelligence 32(3), 281–331 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond HyTech: hybrid systems analysis using interval numerical methods. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790. Springer, Heidelberg (2000)

    Google Scholar 

  16. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata. Journal of Computer and System Sciences 57, 94–124 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hickey, T., Wittenberg, D.: Rigorous modeling of hybrid systems using interval arithmetic constraints. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993. Springer, Heidelberg (2004)

    Google Scholar 

  18. Hickey, T.J.: smathlib, http://interval.sourceforge.net/interval/C/smathlib/README.html

  19. Hickey, T.J.: Analytic constraint solving and interval arithmetic. In: Proceedings of the 27th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (2000)

    Google Scholar 

  20. Hickey, T.J.: Metalevel interval arithmetic and verifiable constraint solving. Journal of Functional and Logic Programming 2001(7) (2001)

    Google Scholar 

  21. Hickey, T.J., van Emden, M.H., Wu, H.: A unified framework for interval constraint and interval arithmetic. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 250–264. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Berlin (2001)

    MATH  Google Scholar 

  23. Lhomme, O.: Consistency techniques for numeric CSPs. In: Proc. 13th Intl. Joint Conf. on Artificial Intelligence (1993)

    Google Scholar 

  24. Lhomme, O., Gotlieb, A., Rueher, M.: Dynamic optimization of interval narrowing algorithms. Journal of Logic Programming 37(1–3), 165–183 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8, 99–118 (1977)

    Article  MATH  Google Scholar 

  26. Milner, R.: An algebraic definition of simulation between programs. In: Proc. of the 2nd International Joint Conference on Artificial Intelligence, pp. 481–489 (1971)

    Google Scholar 

  27. Preußig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.: An algorithm for the approximative analysis of rectangular automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486. Springer, Heidelberg (1998)

    Google Scholar 

  28. Preußig, J., Stursberg, O., Kowalewski, S.: Reachability analysis of a class of switched continuous systems by integrating rectangular approximation and rectangular analysis. In: Vaandrager and van Schuppen [37]

    Google Scholar 

  29. Ratschan, S.: Continuous first-order constraint satisfaction. In: Calmet, J., Benhamou, B., Caprotti, O., Hénocque, L., Sorge, V. (eds.) AISC 2002 and Calculemus 2002. LNCS (LNAI), vol. 2385, pp. 181–195. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Ratschan, S.: Rsolver (2004), http://www.mpi-sb.mpg.de/~ratschan/rsolver Software package

  31. Ratschan, S., She, Z.: Hsolver (2004), http://www.mpi-sb.mpg.de/~ratschan/hsolver Software package

  32. Stursberg, O., Kowalewski, S.: Analysis of controlled hybrid processing systems based on approximation by timed automata using interval arithmetic. In: Proceedings of the 8th IEEE Mediterranean Conference on Control and Automation, MED 2000 (2000)

    Google Scholar 

  33. Stursberg, O., Kowalewski, S., Engell, S.: On the generation of timed discrete approximations for continuous systems. Mathematical and Computer Models of Dynamical Systems 6, 51–70 (2000)

    Article  MATH  Google Scholar 

  34. Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and hybrid automata as approximations of continuous systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273, pp. 361–377. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  35. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin and Greenstreet [36]

    Google Scholar 

  36. Tomlin, C.J., Greenstreet, M.R. (eds.): HSCC 2002. LNCS, vol. 2289. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  37. Vaandrager, F.W., van Schuppen, J.H. (eds.): HSCC 1999. LNCS, vol. 1569. Springer, Heidelberg (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ratschan, S., She, Z. (2005). Safety Verification of Hybrid Systems by Constraint Propagation Based Abstraction Refinement. In: Morari, M., Thiele, L. (eds) Hybrid Systems: Computation and Control. HSCC 2005. Lecture Notes in Computer Science, vol 3414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31954-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31954-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25108-8

  • Online ISBN: 978-3-540-31954-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics