[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Extension of Multiagent Data Mining for Distributed Databases

  • Conference paper
  • First Online:
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3215))

Abstract

We proposed a technique for using multiagent technology in data mining intended for two or more text databases. In this paper, we discuss data mining method based on text (text mining), but our proposed method is not a method of specializing in text mining. First, we proposed data mining technique using multiagent technology. The proposed technique is applied to document databases, and discuss its results. Next, we extend the proposed technique with Stem algorithm, English morphological analysis, changed development language, adding the experiment data, and adding data mining algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Niimi, A., Konishi, O.: Data Mining for Distributed Databases with Multiagents. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 1412–1418. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Niimi, A.: Research Trend Investigation from Bibliographic Database about Chaos using Data Mining Technique, Technical report of IEICE, AI20002-57, 59–64 (2003) (in Japanese)

    Google Scholar 

  3. Ichimura, Y., Hasegawa, T., Watanabe, I., Sato, M.: Text Mining: Case Studies. Journal of Japanese Society for Artificial Intelligence 16(2), 192–200 (2001) (in Japanese)

    Google Scholar 

  4. Nasukawa, T., Kawano, H., Arimura, H.: Base Technology for Text Mining. Journal of Japanese Society for Artificial Intelligence 16(2), 201–211 (2001) (in Japanese)

    Google Scholar 

  5. Nagao, M., Mori, S.: A New Method of N-gram Statistics for Large Number of n and Automatic Extraction of Words and Phrases from Large Text Data of Japanese. In: Proceedings of the 15th International Conference on Computational Linguistics, pp. 611–615 (1994)

    Google Scholar 

  6. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: The 20th International Conference on Very Large Databases, Santiago, Chile, September 1994, 32 pages (1994)

    Google Scholar 

  7. Nagata, M., Taira, H.: Text Classification - Showcase of Learning Theories -. IPSJ Magazine 42(1), 32–37 (2001) (in Japanese)

    Google Scholar 

  8. Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y., Matsuda, H., Takaoka, K., Asahara, M.: Morphological Analysis System ChaSen version 2.2.1 Manual (2000), [Online] Available: http://chasen.aist-nara.ac.jp/chasen/bib.html.en

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niimi, A., Konishi, O. (2004). Extension of Multiagent Data Mining for Distributed Databases. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30134-9_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30134-9_104

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23205-6

  • Online ISBN: 978-3-540-30134-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics