[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Predictive Approaches for Sparse Model Learning

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

  • 70 Accesses

Abstract

In this paper we investigate cross validation and Geisser’s sample reuse approaches for designing linear regression models. These approaches generate sparse models by optimizing multiple smoothing parameters. Within certain approximation, we establish equivalence relationships that exist among these approaches. The computational complexity, sparseness and performance on some benchmark data sets are compared with those obtained using relevance vector machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vector machines. Advances in NIPS 9, 375–381 (1997)

    Google Scholar 

  2. Friedman, J.H.: Multivariate adaptive regression splines. Annals of Statistics 19(1), 1–141 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Naftaly, U., Intrator, N., Horn, D.: Optimal ensemble averaging of neural networks. Comput. Neural Syst. 8, 283–296 (1997)

    Article  MATH  Google Scholar 

  5. Orr, M.J.L.: Local smoothing of Radial Basis Function Networks. In: Proceedings of International Symposium on Neural Networks, Hsinchu, Taiwan (1995)

    Google Scholar 

  6. Sundararajan, S., Keerthi, S.S.: Predictive approaches for choosing hyperparameters in Gaussian Processes. Neural Computation 13(5), 1103–1118 (2001)

    Article  MATH  Google Scholar 

  7. Tipping, M.E.: Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research 1, 211–244 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shevade, S.K., Sundararajan, S., Keerthi, S.S. (2004). Predictive Approaches for Sparse Model Learning. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics