Abstract
This paper shows by a constructive method the existence of a diagrammatic representation called extended Euler diagrams for any collection of sets X 1,...,X n , n<9. These diagrams are adapted for representing sets inclusions and intersections: each set X i and each non empty intersection of a subcollection of X 1,...,X n is represented by a unique connected region of the plane. Starting with an abstract description of the diagram, we define the dual graph G and reason with the properties of this graph to build a planar representation of the X 1,...,X n . These diagrams will be used to visualize the results of a complex request on any indexed video databases. In fact, such a representation allows the user to perceive simultaneously the results of his query and the relevance of the database according to the query.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: algorithms for the visualization of graphs. Prentice-Hall, Englewood Cliffs (1999)
Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for databases: a survey. Journal of Visual Languages and Computing 8, 215–260 (1997)
Consens, M.: Creating and filtering structural data visualizations using Hygraph patterns. Tech. Rep. CSRI–302, Toronto, Canada (February 1994)
Euler, L.: Lettres a une Princesse d’Allemagne sur divers sujets de physique et de philosophie, vol. T. 2, letters 102-108. Berne, Société Typographique (1775)
Flower, J., Howse, J.: Generating Euler diagrams. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 61–75. Springer, Heidelberg (2002)
Gil, J., Kent, S., Howse, J.: Formalizing spider diagrams. In: IEEE Symposium on Visual Languages, Tokyo, September 1999, pp. 130–137. IEEE Computer Society Press, Los Alamitos (1999)
Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn diagrams. Journal of Graph Theory 11(3), 309–325 (1987)
Kuratowski, K.: Sur le probleme des courbes gauches en topologie. Fundamenta Mathematicae 15, 271–283 (1930)
Lemon, O., Pratt, I.: Spatial logic and the complexity of diagrammatic reasoning. Machine Graphics and Vision (Special Issue on Diagrammatic Reasoning) 6(1), 89–109 (1997)
Ruskey, F.: A survey of Venn diagrams. The electronic journal of combinatorics (March 2001), http://www.combinatorics.org/Surveys/ds5/VennEJC.html
Shin, S.-J., Lemon, O.: Diagrams. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2003), http://plato.stanford.edu/entries/diagrams/
Verroust, A., Viaud, M.-L.: Ensuring the drawability of extended Euler diagrams for up to 8 sets. Technical Report RR-4973, INRIA (October 2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Verroust, A., Viaud, ML. (2004). Ensuring the Drawability of Extended Euler Diagrams for up to 8 Sets. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds) Diagrammatic Representation and Inference. Diagrams 2004. Lecture Notes in Computer Science(), vol 2980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25931-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-25931-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21268-3
Online ISBN: 978-3-540-25931-2
eBook Packages: Springer Book Archive