[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

MAFFT: Iterative Refinement and Additional Methods

  • Protocol
  • First Online:
Multiple Sequence Alignment Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1079))

Abstract

This chapter outlines several methods implemented in the MAFFT package. MAFFT is a popular multiple sequence alignment (MSA) program with various options for the progressive method, the iterative refinement method and other methods. We first outline basic usage of MAFFT and then describe recent practical extensions, such as dot plot and adjustment of direction in DNA alignment. We also refer to MUSCLE, another high-performance MSA program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  2. Nuin PA, Wang Z, Tillier ER (2006) The accuracy of several multiple sequence alignment programs for proteins. BMC Bioinformatics 7:471

    Article  PubMed  Google Scholar 

  3. Dessimoz C, Gil M (2010) Phylogenetic assessment of alignments reveals neglected tree signal in gaps. Genome Biol 11:R37

    Article  PubMed  Google Scholar 

  4. Letsch HO, Kuck P, Stocsits RR, Misof B (2010) The impact of rRNA secondary structure consideration in alignment and tree reconstruction: simulated data and a case study on the phylogeny of hexapods. Mol Biol Evol 27:2507–2521

    Article  PubMed  CAS  Google Scholar 

  5. Sahraeian SM, Yoon BJ (2011) PicXAA-R: efficient structural alignment of multiple RNA sequences using a greedy approach. BMC Bioinformatics 12(Suppl 1):S38

    Article  PubMed  Google Scholar 

  6. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  Google Scholar 

  7. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  8. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  Google Scholar 

  9. Feng DF, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25:351–360

    Article  PubMed  CAS  Google Scholar 

  10. Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  PubMed  CAS  Google Scholar 

  11. Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 80:726–730

    Article  PubMed  CAS  Google Scholar 

  12. Loytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320:1632–1635

    Article  PubMed  Google Scholar 

  13. Lassmann T, Sonnhammer EL (2005) Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6:298

    Article  PubMed  Google Scholar 

  14. Barton GJ, Sternberg MJ (1987) A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons. J Mol Biol 198:327–337

    CAS  Google Scholar 

  15. Berger MP, Munson PJ (1991) A novel randomized iterative strategy for aligning multiple protein sequences. Comput Appl Biosci 7:479–484

    PubMed  CAS  Google Scholar 

  16. Gotoh O (1993) Optimal alignment between groups of sequences and its application to multiple sequence alignment. Comput Appl Biosci 9:361–370

    PubMed  CAS  Google Scholar 

  17. Gotoh O (1995) A weighting system and algorithm for aligning many phylogenetically related sequences. Comput Appl Biosci 11:543–551

    PubMed  CAS  Google Scholar 

  18. Ishikawa M, Toya T, Hoshida M, Nitta K, Ogiwara A, Kanehisa M (1993) Multiple sequence alignment by parallel simulated annealing. Comput Appl Biosci 9:267–273

    PubMed  CAS  Google Scholar 

  19. Notredame C, Higgins DG (1996) Saga: sequence alignment by genetic algorithm. Nucleic Acids Res 24:1515–1524

    Article  PubMed  CAS  Google Scholar 

  20. Gotoh O (1996) Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments. J Mol Biol 264:823–838

    Article  PubMed  CAS  Google Scholar 

  21. Hirosawa M, Totoki Y, Hoshida M, Ishikawa M (1995) Comprehensive study on iterative algorithms of multiple sequence alignment. Comput Appl Biosci 11:13–18

    PubMed  CAS  Google Scholar 

  22. Vingron M, Argos P (1989) A fast and sensitive multiple sequence alignment algorithm. Comput Appl Biosci 5:115–121

    PubMed  CAS  Google Scholar 

  23. Gotoh O (1990) Consistency of optimal sequence alignments. Bull Math Biol 52:509–525

    PubMed  CAS  Google Scholar 

  24. Notredame C, Holm L, Higgins DG (1998) COFFEE: an objective function for multiple sequence alignments. Bioinformatics 14:407–422

    Article  PubMed  CAS  Google Scholar 

  25. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  26. Do CB, Mahabhashyam MS, Brudno M, Batzoglou S (2005) ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 15:330–340

    Article  PubMed  CAS  Google Scholar 

  27. Roshan U, Livesay DR (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics 22:2715–2721

    Article  PubMed  CAS  Google Scholar 

  28. Pei J, Grishin NV (2007) PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23:802–808

    Article  PubMed  CAS  Google Scholar 

  29. Liu Y, Schmidt B, Maskell DL (2010) MSAProbs: multiple sequence alignment based on pair hidden markov models and partition function posterior probabilities. Bioinformatics 26:1958–1964

    Article  PubMed  CAS  Google Scholar 

  30. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  PubMed  CAS  Google Scholar 

  31. Katoh K, Toh H (2008) Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9:212

    Article  PubMed  Google Scholar 

  32. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119

    Article  PubMed  CAS  Google Scholar 

  33. Tabei Y, Tsuda K, Kin T, Asai K (2006) SCARNA: fast and accurate structural alignment of rna sequences by matching fixed-length stem fragments. Bioinformatics 22:1723–1729

    Article  PubMed  CAS  Google Scholar 

  34. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066

    Article  PubMed  CAS  Google Scholar 

  35. Tabei Y, Kiryu H, Kin T, Asai K (2008) A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics 9:33

    Article  PubMed  Google Scholar 

  36. Hamada M, Sato K, Kiryu H, Mituyama T, Asai K (2009) CentroidAlign: fast and accurate aligner for structured RNAs by maximizing expected sum-of-pairs score. Bioinformatics 25:3236–3243

    Article  PubMed  CAS  Google Scholar 

  37. Wilm A, Higgins DG, Notredame C (2008) R-Coffee: a method for multiple alignment of non-coding RNA. Nucleic Acids Res 36:e52

    Article  PubMed  Google Scholar 

  38. Katoh K, Frith MC (2012) Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28:3144–3146

    Google Scholar 

  39. Katoh K, Toh H (2007) PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics 23:372–374

    Article  PubMed  CAS  Google Scholar 

  40. Blackshields G, Sievers F, Shi W, Wilm A, Higgins DG (2010) Sequence embedding for fast construction of guide trees for multiple sequence alignment. Algorithms Mol Biol 5:21

    Article  PubMed  Google Scholar 

  41. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21:487–493

    Article  PubMed  Google Scholar 

  42. Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900

    Article  PubMed  CAS  Google Scholar 

  43. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  PubMed  CAS  Google Scholar 

  44. Sigrist CJ, Cerutti L, deCastro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38:D161–D166

    Article  PubMed  CAS  Google Scholar 

  45. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  46. Berger SA, Stamatakis A (2011) Aligning short reads to reference alignments and trees. Bioinformatics 27:2068–2075

    Article  PubMed  CAS  Google Scholar 

  47. Sun H, Buhler JD (2012) PhyLAT: a phylogenetic local alignment tool. Bioinformatics 28:1336–1344

    Article  PubMed  CAS  Google Scholar 

  48. Löytynoja A, Vilella AJ, Goldman N (2012) Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm. Bioinformatics 28:1684–1691

    Article  PubMed  Google Scholar 

  49. Mirarab S, Nguyen N, Warnow T (2012) SEPP: SATé-Enabled phylogenetic placement. Pac Symp Biocomput 17:247–258

    Google Scholar 

  50. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    Article  PubMed  Google Scholar 

  51. O’Sullivan O, Suhre K, Abergel C, Higgins DG, Notredame C (2004) 3DCoffee: combining protein sequences and structures within multiple sequence alignments. J Mol Biol 340:385–395

    Article  PubMed  Google Scholar 

  52. Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 36:2295–2300

    Article  PubMed  CAS  Google Scholar 

  53. Standley DM, Toh H, Nakamura H (2004) Detecting local structural similarity in proteins by maximizing number of equivalent residues. Proteins 57:381–391

    Article  PubMed  CAS  Google Scholar 

  54. Taylor WR, Orengo CA (1989) Protein structure alignment. J Mol Biol 208:1–22

    Article  PubMed  CAS  Google Scholar 

  55. Orengo CA, Taylor WR (1993) A local alignment method for protein structure motifs. J Mol Biol 233:488–497

    Article  PubMed  CAS  Google Scholar 

  56. Toh H (1997) Introduction of a distance cut-off into structural alignment by the double dynamic programming algorithm. Comput Appl Biosci 13:387–396

    PubMed  CAS  Google Scholar 

  57. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Katoh, K., Standley, D.M. (2014). MAFFT: Iterative Refinement and Additional Methods. In: Russell, D. (eds) Multiple Sequence Alignment Methods. Methods in Molecular Biology, vol 1079. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-646-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-646-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-645-0

  • Online ISBN: 978-1-62703-646-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics