Summary
Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum–specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Klionsky, D. J., and Emr, S. D. (2000) Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721.
Mizushima, N., Ohsumi, Y., and Yoshimori, T. (2002) Autophagosome formation in mammalian cells. Cell Struct. Funct. 27, 421–429.
Boya, P., Gonzalez-Polo, R. A., Casares, N., et al. (2005) Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol. 25, 1025–1040.
Klionsky, D. J. (2005) The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 118, 7–18.
Ohsumi, Y. (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol. Cell Biol. 2, 211–216.
Kabeya, Y., Mizushima, N., Ueno, T., et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728.
Kihara, A., Kabeya, Y., Ohsumi, Y., and Yoshimori, T. (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2, 330–335.
Pattingre, S., Tassa, A., Qu, X., et al. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939.
Mizushima, N. (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ. 12 (Suppl. 2), 1535–1541.
Yorimitsu, T., and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12 (Suppl. 2), 1542–1552.
Golstein, P., and Kroemer, G. (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci., in press.
Gonzalez-Polo, R. A., Boya, P., Pauleau, A. L., et al. (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J. Cell. Sci. 118, 3091–3102.
Yamamoto, A., Tagawa, Y., Yoshimori, T., Moriyama, Y., Masaki, R., and Tashiro, Y. (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33–42.
Lum, J. J., Bauer, D. E., Kong, M., et al. (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248.
Boya, P., Gonzalez-Polo, R. A., Poncet, D., et al. (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22, 3927–3936.
Yu, L. Y., Jokitalo, E., Sun, Y. F., et al. (2003) GDNF-deprived sympathetic neurons die via a novel nonmitochondrial pathway. J. Cell Biol. 163, 987–997.
Mills, K. R., Reginato, M., Debnath, J., Queenan, B., and Brugge, J. S. (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc. Natl. Acad. Sci. USA 101, 3438–3443.
Yu, L., Alva, A., Su, H., et al. (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502.
Shimizu, S., Kanaseki, T., Mizushima, N., et al. (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol. 6, 1221–1228.
Pyo, J. O., Jang, M. H., Kwon, Y. K., et al. (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J. Biol. Chem. 280, 20722–20729.
Marchetti, P., Castedo, M., Susin, S. A., et al. (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J. Exp. Med. 184, 1155–1160.
Kroemer, G., El-Deiry, W. S., Golstein, P., et al. (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 12 (Suppl. 2), 1463–1467.
Debnath, J., Baehrecke, E. H., and Kroemer, G. (2005) Does autophagy contribute to cell death? Autophagy 1, 66–74.
Codogno, P., and Meijer, A. J. (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12 (Suppl. 2), 1509–1518.
Lum, J. J., DeBerardinis, R. J., and Thompson, C. B. (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat. Rev. Mol. Cell Biol. 6, 439–448.
Sarbassov, D. D., Ali, S. M., and Sabatini, D. M. (2005) Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 17, 596–603.
Castedo, M., Ferri, K. F., and Kroemer, G. (2002) Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ. 9, 99–100.
Asnaghi, L., Bruno, P., Priulla, M., and Nicolin, A. (2004) mTOR: a protein kinase switching between life and death. Pharmacol. Res. 50, 545–549.
Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., and Codogno, P. (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275,992–998.
Zeng, X., Overmeyer, J. H., and Maltese, W. A. (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J. Cell. Sci. 119, 259–270.
Scarlatti, F., Bauvy, C., Ventruti, A., et al. (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and upregulation of beclin 1. J. Biol. Chem. 279, 18384–18391.
Sarkar, S., Floto, R. A., Berger, Z., et al. (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170, 1101–1111.
Criollo, A., Maiuri, M. C., Tasdemir, E., et al. (2007) Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Diff., in press.
Ogata, M., Hino, S. I., Saito, A., et al. (2006) Autophagy is activated for cell survival after ER stress. Mol. Cell Biol., in press.
Kiffin, R., Bandyopadhyay, U., and Cuervo, A. M. (2006) Oxidative stress and autophagy. Antioxid. Redox Signal. 8, 152–162.
Kroemer, G., and Jaattela, M. (2005) Lysosomes and autophagy in cell death control. Nat. Rev. Cancer 5, 886–897.
Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y. (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266, 17707–17712.
Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H., and Meijer, A. J. (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240–246.
Xue, L., Borutaite, V., and Tolkovsky, A. M. (2002) Inhibition of mitochondrial permeability transition and release of cytochrome c by anti-apoptotic nucleoside analogues. Biochem. Pharmacol. 64, 441–449.
Moriyama, Y., and Nelson, N. (1989) H+-translocating ATPase in Golgi apparatus. Characterization as vacuolar H+-ATPase and its subunit structures. J. Biol. Chem. 264, 18445–18450.
Bampton, E. T., Goemans, C. G., Niranjan, D., Mizushima, N., and Tolkovsky, A. M. (2005) The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 1, 23–36.
Kroemer, G., Galluzzi, L., and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163.
Garrido, C., Galluzzi, L., Brunet, M., Puig, P. E., Didelot, C., and Kroemer, G. (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13, 1423–1433.
Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., et al. (2006) Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochim. Biophys. Acta 1757, 525–534.
Zamzami, N., Marchetti, P., Castedo, M., et al. (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J. Exp. Med. 182, 367–377.
Priault, M., Salin, B., Schaeffer, J., Vallette, F. M., di Rago, J. P., and Martinou, J. C. (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ. 12, 1613–1621.
Matz, M. V., Fradkov, A. F., Labas, Y. A., et al. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973.
Rizzuto, R., Brini, M., Pizzo, P., Murgia, M., and Pozzan, T. (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5, 635–642.
Rizzuto, R., Nakase, H., Darras, B., et al. (1989) A gene specifying subunit VIII of human cytochrome c oxidase is localized to chromosome 11 and is expressed in both muscle and non-muscle tissues. J. Biol. Chem. 264, 10595–10600.
Poot, M., Zhang, Y. Z., Kramer, J. A., et al. (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 44, 1363–1372.
Daugas, E., Susin, S. A., Zamzami, N., et al. (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 14, 729–739.
Galluzzi, L., Zamzami, N., De La Motte Rouge, T., Lemaire, C., Brenner, C., and Kroemer, G. (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis, In press.
Obeid, M., Tesniere, A., Ghiringhelli, F., et al. (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med., in press.
Kroemer, G., and Reed, J. C. (2000) Mitochondrial control of cell death. Nat. Med. 6, 513–519.
Wei, M. C., Zong, W. X., Cheng, E. H., et al. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.
Willis, S. N., and Adams, J. M. (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17, 617–625.
Zamzami, N., Larochette, N., and Kroemer, G. (2005) Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ. 12 (Suppl. 2), 1478–1480.
Zoratti, M., and Szabo, I. (1995) The mitochondrial permeability transition. Biochim. Biophys. Acta 1241, 139–176.
Cain, K., Bratton, S. B., and Cohen, G. M. (2002) The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84, 203–214.
Martins, L. M., Iaccarino, I., Tenev, T., et al. (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 277, 439–444.
Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.
Verhagen, A. M., Ekert, P. G., Pakusch, M., et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53.
Modjtahedi, N., Giordanetto, F., Madeo, F., and Kroemer, G. (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol. 16, 264–272.
Susin, S. A., Lorenzo, H. K., Zamzami, N., et al. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446.
Li, L. Y., Luo, X., and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99.
Metivier, D., Dallaporta, B., Zamzami, N., et al. (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol. Lett. 61, 157–163.
Ferri, K. F., Jacotot, E., Blanco, J., Este, J. A., and Kroemer, G. (2000) Mitochondrial control of cell death induced by HIV-1-encoded proteins. Ann. NY Acad. Sci. 926, 149–164.
Susin, S. A., Larochette, N., Geuskens, M., and Kroemer, G. (2000) Purification of mitochondria for apoptosis assays. Methods. Enzymol. 322, 205–208.
Goldstein, J., Waterhouse, N., Juin, P., Evan, G., and Green, D. (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2, 156–162.
Loeffler, M., Daugas, E., Susin, S. A., et al. (2001) Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. FASEB J. 15,758–767.
Emoto, K., Toyama-Sorimachi, N., Karasuyama, H., Inoue, K., and Umeda, M. (1997) Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp. Cell Res. 232, 430–434.
Martin, S. J., Reutelingsperger, C. P., McGahon, A. J., et al. (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med. 182, 1545–1556.
Rothe, G., and Valet, G. (1990) Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2’,7’-dichlorofluorescin. J. Leukoc. Biol. 47, 440–448.
Carter, W. O., Narayanan, P. K., and Robinson, J. P. (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leukoc. Biol. 55, 253–258.
Petit, P. X., Lecoeur, H., Zorn, E., Dauguet, C., Mignotte, B., and Gougeon, M. L. (1995) Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J. Cell Biol. 130, 157–167.
Kroemer, G., and Martin, S. J. (2005) Caspase-independent cell death. Nat. Med. 11, 725–730.
Garrido, C., and Kroemer, G. (2004) Life’s smile, death’s grin: vital functions of apoptosis-executing proteins. Curr. Opin. Cell Biol. 16, 639–646.
Fuentes-Prior, P., and Salvesen, G. S. (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384, 201–232.
Vahsen, N., Cande, C., Dupaigne, P., et al. (2006) Physical interaction of apoptosis-inducing factor with DNA and RNA. Oncogene 25, 1763–1774.
Niemann, A., Takatsuki, A., and Elsasser, H. P. (2000) The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J. Histochem. Cytochem. 48, 251–258.
Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T., and Weber, K. (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell. Sci. 114, 4557–4565.
Nobukuni, T., Joaquin, M., Roccio, M., et al. (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl. Acad. Sci. USA 102, 14238–14243.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Humana Press, a part of Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Tasdemir, E. et al. (2008). Methods for Assessing Autophagy and Autophagic Cell Death. In: Deretic, V. (eds) Autophagosome and Phagosome. Methods in Molecular Biology™, vol 445. Humana Press. https://doi.org/10.1007/978-1-59745-157-4_3
Download citation
DOI: https://doi.org/10.1007/978-1-59745-157-4_3
Publisher Name: Humana Press
Print ISBN: 978-1-58829-853-9
Online ISBN: 978-1-59745-157-4
eBook Packages: Springer Protocols