Abstract
Some recent developments in the area of risk aversion in stochastic integer programming are surveyed. After a discussion of modeling guidelines and resulting mean–risk stochastic integer programs emphasis is placed on structural properties of these optimization problems and on algorithms for their solution. Bibliographical notes conclude the Chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, S.: Convexity and decomposition of mean-risk stochastic programs. Math. Program. 106(3), 433–446 (2006)
Alonso-Ayuso, A., Escudero, L. F., Garín, A., Ortuño, M. T., Pérez, G.: An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming. J. Global Optim. 26(1), 97–124 (2003a)
Alonso-Ayuso, A., Escudero, L.F., Ortuño, M.T.: BFC: A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs. Eur. J. Oper. Res. 151(3), 503–519 (2003b)
Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and bellman’s principle. Ann. Oper. Res. 152(1), 5–22 (2007)
Bank, B., Mandel, R.: Parametric Integer Optimization. Akademie-Verlag, Berlin (1988)
Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Akademie-Verlag, Berlin (1982)
Bereanu, B.: Programme de risque minimal en programmation linéaire stochastique. Comptes Rendus de l’ Académie des Sciences Paris 259(5), 981–983 (1964)
Bereanu, B.: Minimum risk criterion in stochastic optimization. Econ. Comput. Econ. Cybern. Stud. Res. 2, 31–39 (1981)
Billingsley, P.: Convergence of Probability Measures. Wiley, New York, NY (1968)
Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York, NY (1997)
Blair, C.E., Jeroslow, R.G.: The value function of a mixed integer program: I. Discr. Math. 19, 121–138 (1977)
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York, NY (2000)
Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24(1–2), 37–45 (1999)
Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11(1), 18–38 (1963)
Dentcheva, D., Römisch, W.: Duality gaps in nonconvex stochastic optimization. Math. Program. 101(3), 515–535 (2004)
Dentcheva, D., Ruszczyński, A.: Stochastic optimization with dominance constraints. SIAM J. Optim. 14(2), 548–566 (2003)
Dentcheva, D., Ruszczyński, A.: Optimality and duality theory for stochastic optimization with nonlinear dominance constraints. Math. Program. 99(2), 329–350 (2004)
Eichhorn, A., Römisch, W.: Polyhedral risk measures in stochastic programming. SIAM J. Optim. 16(1), 69–95 (2005)
Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Math. Program. 93(7), 173–194 (2002)
Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester (1994)
Kibzun, A.I., Kan, Y.S.: Stochastic Programming Problems with Probability and Quantile Functions. Wiley, Chichester, (1996)
Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable optimization. Math. Program. 46(1–2), 105–122 (1990)
Kristoffersen, T.: Deviation measures in linear two-stage stochastic programming. Math. Methods Oper. Res. 62(2), 255–274 (2005)
Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manage. Sci. 38(4), 555–593 (1992)
Louveaux, F.V., Schultz, R.: Stochastic integer programming. In: Ruszczyński, A., Shapiro, A., (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, pp. 213–266. Elsevier, Amsterdam (2003)
Märkert, A., Schultz, R.: On deviation measures in stochastic integer programming. Oper. Res. Lett. 33(5), 441–449 (2005)
Markowitz, H.M.: Portfolio selection. J. Finance 7(1), 77–91 (1952)
Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Chichester (2002)
Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)
Ogryczak, W., Ruszczyński, A.: From stochastic dominance to mean-risk models: Semideviations as risk measures. Eur. J. Oper. Res. 116(1), 33–50 (1999)
Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13(1), 60–78 (2002)
Pflug, G.C.: Some remarks on the value-at-risk and the conditional value-at-risk. In: Uryasev, S., (ed.) Probabilistic Constrained Optimization: Methodology and Applications, pp. 272–281. Kluwer, Dordrecht (2000)
Pflug, G.C.: A value-of-information approach to measuring risk in multiperiod economic activity. J. Bank. Finance. 30(2), 695–715 (2006)
Pflug, G.C., Ruszczyński, A.: Risk measures for income streams. In: Szegö, G., (ed.) Risk Measures for the 21st. Century, pp. 249–269. Wiley, Chichester (2004)
Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)
Raik, E.: Qualitative research into the stochastic nonlinear programming problems. Eesti NSV Teaduste Akademia Toimetised / Füüsika, Matemaatica (News of the Estonian Academy of Sciences / Physics, Mathematics), 20, 8–14 (1971) In Russian
Raik, E.: On the stochastic programming problem with the probability and quantile functionals. Eesti NSV Teaduste Akademia Toimetised / Füüsika, Matemaatica (News of the Estonian Academy of Sciences / Physics, Mathematics), 21, 142–148 (1972) In Russian
Riis, M., Schultz, R.: Applying the minimum risk criterion in stochastic recourse programs. Comput. Optim. Appl. 24(2–3), 267–287 (2003)
Robinson, S.M.: Local epi-continuity and local optimization. Math. Program. 37(2), 208–222 (1987)
Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance. 26(7), 1443–1471 (2002)
Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A.A., Shapiro, A., (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, pp. 483–554. Elsevier, Amsterdam (2003)
Ruszczyński, A., Shapiro, A.: Stochastic Programming. Handbooks in Operations Research and Management Science. Elsevier, Amsterdam (2003)
Ruszczyński, A., Vanderbei, R.J.: Frontiers of stochastically nondominated portfolios. Econometrica 71(4), 1287–1297 (2003)
Schultz, R.: On structure and stability in stochastic programs with random technology matrix and complete integer recourse. Math. Program. 70(1–3), 73–89 (1995)
Schultz, R.: Some aspects of stability in stochastic programming. Ann. Oper. Res. 100(1–4), 55–84 (2000)
Schultz, R.: Mixed-integer value functions in stochastic programming. In: Jünger, M., Reinelt, G., Rinaldi, G., (eds.) Combinatorial Optimization – Eureka, You Shrink!, Papers Dedicated to Jack Edmonds, LNCS 2570, pp. 171–184. Springer, Berlin (2003)
Schultz, R., Tiedemann, S.: Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse. SIAM J. Optim. 14(1), 115–138 (2003)
Schultz, R., Tiedemann, S.: Conditional value-at-risk in stochastic programs with mixed-integer recourse. Math. Program. 105(2–3), 365–386 (2006)
Takriti, S., Ahmed, S.: On robust optimization of two-stage systems. Math. Program. 99(1), 109–126 (2004)
Tiedemann, S.: Risk measures with preselected tolerance levels in two-stage stochastic mixed-integer programming. PhD thesis, University of Duisburg-Essen, Cuvillier Verlag, Göttingen (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Schultz, R. (2010). Risk Aversion in Two-Stage Stochastic Integer Programming. In: Infanger, G. (eds) Stochastic Programming. International Series in Operations Research & Management Science, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1642-6_8
Download citation
DOI: https://doi.org/10.1007/978-1-4419-1642-6_8
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-1641-9
Online ISBN: 978-1-4419-1642-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)