[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Research Progress of Knowledge Graph Based on Knowledge Base Embedding

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 902))

  • 1880 Accesses

Abstract

The knowledge Graph (KGs) is a valuable tool and useful resource to describe the entities and their relationships in various natural language processing tasks. Especially, the insufficient semantic of entities and relationship in text limited the efficiency and accuracy of knowledge representation. With the increasing of knowledge base resources, many scholars began to study the knowledge graph’s construction technology based on knowledge base embedding. The basic idea is that the knowledge graph will be treated as a recursive process. Through utilizing the knowledge base’s resources and the semantic representation of text characteristic, we can extend the new features that improve learning performance and knowledge graph completeness. In this paper, we give a general overview of knowledge graph’s construction research based on knowledge embedding, including knowledge representation, knowledge embedding and so on. Then we summarize the challenge for the knowledge graph and the future development trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amit, S.: Introducing the knowledge graph. Official Blog of Google, America (2012)

    Google Scholar 

  2. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995). https://doi.org/10.1145/219717.219745

    Article  Google Scholar 

  3. Bizer, C., Lehmann, J., Kobilarov, G., et al.: DBpedia - a crystallization point for the web of data. Web Semant. Sci. Serv. Agents World Wide Web 7(3), 154–165 (2009)

    Article  Google Scholar 

  4. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a large ontology from wikipedia and WordNet. Web Semant. Sci. Serv. Agents World Wide Web 6(3), 203–217 (2008)

    Article  Google Scholar 

  5. Campbell, C.: Wikipedia: the free encyclopedia. Ref. Rev. 26(16), 5 (2002)

    Google Scholar 

  6. Wang, Z., Li, J., Wang, Z., et al.: Xlore: A large-scale English-Chinese bilingual knowledge graph. In: Proceedings of the 2013 International Conference on Posters & Demonstrations Track-Volume 1035, pp. 121–124 (2013)

    Google Scholar 

  7. Carlson, A., Betteridge, J., Kisiel, B., et al.: Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, vol. 5, pp. 1306–1313 (2010)

    Google Scholar 

  8. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–2795. MIT Press, Cambridge, MA (2013)

    Google Scholar 

  9. Wang, Z., Zhang, J., Feng, J., et al.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI, pp. 1112–1119, Menlo Park, CA (2014)

    Google Scholar 

  10. Lin, Y., Liu, Z., Zhu, X., et al.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2181–2187. AAAI Press (2015)

    Google Scholar 

  11. Ji, G., He, S., Xu, L., et al.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of ACL, pp. 687–696. ACL, Stroudsburg, PA (2015)

    Google Scholar 

  12. Ji, G., Liu, K., He, S., et al.: Knowledge graph completion with adaptive sparse transfer matrix. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 985–991. AAAI Press (2016)

    Google Scholar 

  13. Xie, R., Liu, Z., Jia, J., et al.: Representation learning of knowledge graphs with entity descriptions. In: Proceedings of AAAI. AAAI, Mcnlo Park, CA (2016)

    Google Scholar 

  14. Xiao, H., Huang, M., Hao, Y., et al.: TransG: a generative mixture model for knowledge graph embedding. ArXiv Preprint arXiv:1509.05488, vol. 1509, p. 05488 (2015)

  15. He, S., Liu, K., Ji, J., et al.: Learning to represent knowledge graphs with Gaussian embedding. In: Proceedings of CIKM, pp. 623–632. ACM, New York (2015)

    Google Scholar 

  16. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: International Conference on Machine Learning, pp. 809–816. Omnipress (2011)

    Google Scholar 

  17. Yang, B., Yih, W.T., He, X., et al.: Embedding entities and relations for learning and inference in knowledge bases. Eprint Arxiv arXiv:1412.6575 (2014)

  18. Trouillon, T., Welbl, J., Riedel, S., et al.: Complex embeddings for simple link prediction, pp. 2071–2080 (2016)

    Google Scholar 

  19. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 1955–1961. AAAI Press (2016)

    Google Scholar 

  20. Dettmers, T., Minervini, P., Stenetorp, P., et al.: Convolutional 2D knowledge graph embeddings (2017)

    Google Scholar 

  21. Zeng, D., Liu, K., Chen, Y., et al.: Distant supervision for relation extraction via piecewise convolutional neural networks. In: Conference on Empirical Methods in Natural Language Processing, pp. 1753–1762 (2015)

    Google Scholar 

  22. Lin, Y., Shen, S., Liu, Z., et al.: Neural relation extraction with selective attention over instances. In: Meeting of the Association for Computational Linguistics, pp. 2124–2133 (2016)

    Google Scholar 

  23. Wu, Y., Bamman, D., Russell, S.: Adversarial training for relation extraction. In: Conference on Empirical Methods in Natural Language Processing, pp. 1778–1783 (2017)

    Google Scholar 

  24. Frege, G.: Jber sinn und bedeutung. Wittgenstein Studien 100, 25–50 (1892)

    Google Scholar 

  25. Hermann, K.M.: Distributed Representations for Compositional Semantics. Ph.D. Dissertation, University of Oxford (2014)

    Google Scholar 

  26. Socher, R., Karpathy, A., Le, Q.V., Manning, C.D., Ng, A.Y.: Grounded compositional semantics for finding and describing images with sentences. Trans. Assoc. Comput. Linguist. 2, 207–218 (2014)

    Google Scholar 

  27. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, USA, pp. 1631–1642 (2013)

    Google Scholar 

  28. Socher, R., Huang, E.H., Pennin, J., Manning, C.D., Ng, A.Y.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Proceedings of Advances in Neural Information Processing Systems, vol. 24, Granada, Spain, pp. 801–809 (2011)

    Google Scholar 

  29. Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D.: Semi-supervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, pp. 151–161. Association for Computational Linguistics, Scotland, UK (2011)

    Google Scholar 

  30. Mitchell, J., Lapata, M.: Composition in distributional models of semantics. Cognit. Sci. 34(8), 1388–1429 (2010)

    Article  Google Scholar 

  31. Elman, J.L.: Finding structure in time. Cognit. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  32. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  33. Yao, Y., Huang, Z.: Bi-directional LSTM recurrent neural network for Chinese word segmentation. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016, Part IV. LNCS, vol. 9950, pp. 345–353. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46681-1_42

    Chapter  Google Scholar 

  34. Chiu, J.P.C., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Comput. Sci. (2015)

    Google Scholar 

  35. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  Google Scholar 

  36. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  37. Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional networks for natural language processing. arXiv preprint arXiv:1606.01781 (2016)

  38. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

  39. Kim, Y.: Convolutional neural networks for sentence classifcation. In: EMNLP (2014)

    Google Scholar 

  40. Zhou, G., et al.: Deep Interest Network for Click-Through Rate Prediction. arXiv preprint arXiv:1706.06978 (2017)

  41. Friedman, L., Markovitch, S.: Recursive Feature Generation for Knowledge-based Learning (2018)

    Google Scholar 

  42. Annervaz, K.M., Chowdhury, S.B.R., Dukkipati, A.: Learning beyond datasets: knowledge graph augmented neural networks for natural language processing (2018)

    Google Scholar 

  43. Liu, Z.-y, Sun, M.-s, Lin, Y.-k, et al.: Knowledge representation learning: a review. J. Comput. Res. Develop. 53(2), 1–16 (2016)

    Google Scholar 

  44. Kemp, C., Tenenbaum, J.B.: Structured statistical models of inductive reasoning. Psychol. Rev. 116(1), 20–58 (2009)

    Article  Google Scholar 

  45. Yan, J., Wang, C., Cheng, W., et al.: A retrospective of knowledge graphs. Front. Comput. Sci., 1–20 (2016)

    Google Scholar 

Download references

Acknowledgement

This article was supported jointly by the National Natural Science Foundation of China (No. F020807), Found Program of Ministry of Education of China for “Integration of Cloud Computing and Big Data, Innovation of Science and Education” (No. 2017B00030), Basic Scientific Research Operating Expenses of Central Universities (No. ZDYF2017006), Science and Technology Department Collaborative Innovation Program of Shaanxi Provincial (No. 2015XT-21) and Shaanxi Soft Science Key Program (No. 2013KRZ10).We would like to thank them for providing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Caifang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caifang, T., Yuan, R., Hualei, Y., Jiamin, C. (2018). Research Progress of Knowledge Graph Based on Knowledge Base Embedding. In: Zhou, Q., Miao, Q., Wang, H., Xie, W., Wang, Y., Lu, Z. (eds) Data Science. ICPCSEE 2018. Communications in Computer and Information Science, vol 902. Springer, Singapore. https://doi.org/10.1007/978-981-13-2206-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2206-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2205-1

  • Online ISBN: 978-981-13-2206-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics