Abstract
Automated moving object detection and analysis assumes a great significance in video surveillance. This article presents a comprehensive survey on the techniques of object-in-motion detection for video surveillance. In this paper, eight methods of object detection in video streams are implemented and evaluated empirically on five quality parameters for identifying the efficiency and effectiveness of these methods. For objective assessments of these methods, a standard dataset “CDnet2012” is used which consists of six different rigorous scenarios. In conclusion, an attempt has been made to identify the best method for different scenarios, employable in real-time video surveillance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Green, M.W., Travis, J., Downs, R.: The appropriate and effective use of security technologies in U.S. Schools. U.S. Department of Justice, 810 Seventh Street N.W. Washington, DC 20531 (2014)
Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. (2014)
Parekh, H.S., Thakore, D.G., Jaliya, U.K.: A survey on object detection and tracking methods. Int. J. Innov. Res. Comput. Commun. Eng. 2(2)
Lin, D., Cao, D., Zeng, H.: Improving motion state change object detection by using block background context. UCKI 2014 (2014)
Lee, B., Hedley, M.: Background estimation for video surveillance. In: Image and Vision Computing, IVCNZ 2002, pp. 315−320. NZ (2002)
Colombari, A., Fusiello, A.: Patch-based background initialization in the heavily cluttered video. IEEE Trans. Image Process. 19(4), 926–933 (2010)
Mingwu, R., Han, S.: A practical method for moving target detection under complex background. Comput. Eng. 33–34 (2005)
Jiang, S., Zhao, Y.: Background extraction algorithm based on partition weighed histogram. In: IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2012, pp. 433−437 (2012)
Cheng, F., Huang, S., Ruan, S.: Advanced motion detection for intelligent video surveillance systems. In: ACM Symposium on Applied Computing. Lausanne, Switzerland (2010)
Yan, J., Yu, Y., Zhu, X., Lei, Z., Li, S.Z.: Object detection by labeling superpixels. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA (2015)
Li, X., Ng, M., Yuan, X.: Median filtering-based methods for static background extraction from surveillance video. Numerical Linear Algebra with Applications, Wiley Online Library (2015)
Ching, S., Cheung, S., Chandrika, K.: Robust techniques for background subtraction in urban traffic video. In: Proceedings SPIE 5308, Visual Communications and Image Processing, pp. 881 (2004). https://doi.org/10.1117/12.526886
Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)
Stauffer, C., Grimson, W.E.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)
Soh, Y., Hae, Y., Mehmood, A., Hadi Ashraf, R., Kim, I.: Performance evaluation of various functions for Kernel density estimation. Open J. Appl. Sci. 3(18), 58–64 (2013)
Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using non-parametric Kernel density estimation for visual surveillance. IEEE Proc. Comput. Vis. 90(7) (2002). https://doi.org/10.1109/JPROC.2002.801448
Junejo, I., Bhutta, A., Foroosh, H.: Single class support vector machine (SVM) for scene modeling. J. Signal Image Video Proc. (2011)
Zhang, J., Tian, Y., Yang, Y., Zhu, C.: Robust foreground segmentation using subspace-based background model. In: Asia-Pacific Conference on Information Processing, APCIP 2009, vol. 2, pp. 214–217 (2009)
Li, Q., He, D., Wang, B.: Effective moving objects detection based on clustering background model for video surveillance. Congr. Image Signal Proc. CISP 2008(3), 656–660 (2008)
Kumar, N.A., Sureshkumar, C.: Background subtraction based on threshold detection using modified K-means algorithm. In: International Conference on Pattern Recognition, Informatics and Mobile Engineering, Salem, pp. 378−382 (2013)
Xiao, M.: An improved background reconstruction algorithm based on basic sequential clustering. Inf. Technol. J. 7, 522–527 (2008)
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Background modeling and subtraction by codebook construction. In: IEEE International Conference on Image Processing, ICIP 2004 (2004)
Badal, T., Nain, N., Ahmed, M., Sharma, V.: An improved multi-layer codebook model to eliminate ghost region. In: Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1–4. Patna (2015). https://doi.org/10.1109/NCVPRIPG.2015.749003
Lin, H.H., Liu, T.L., Chuang, J.H.: A probabilistic SVM approach for background scene initialization. In: IEEE International Conference Image Processing, pp. 893−896 (2002)
Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)
Baf, F.E., Bouwmans, T., Vachon, B.: Fuzzy integral for moving object detection. In: International Conference on Fuzzy Systems, FUZZ-IEEE, pp. 1729−1736 (2008)
Bouwmans, T.: Background subtraction for visual surveillance: a fuzzy approach. Handbook on Soft Computing for Video Surveillance. CRC Press, pp. 103−134 (2012)
Scott, J., Pusateri, A.M., Cornish, D.: Kalman filter based video background estimation. In: Applied Imagery Pattern Recognition Workshop (AIPRW), pp. 1−7. https://doi.org/10.1109/AIPR.2009.5466306
Wang, B., Dudek, P.: A fast self-tuning background subtraction algorithm. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, pp. 401−404. https://doi.org/10.1109/CVPRW.2014.64
Lu, X., Manduchi, R.: Fast image motion segmentation for surveillance applications. Image Vis. Comput. 29(2–3), 104–116 (2011)
Chauhan, A.K., Krishan, P.: Moving object tracking using Gaussian mixture model and optical flow. In: International Journal of Advanced Research in Computer Science and Software Engineering (2013)
Shahbaz, A., Hariyono, J., Jo, K.: Evaluation of background subtraction algorithms for video surveillance. FCV 2015 (2015)
Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. In: Computer Vision and Image Understanding, CVIU 2014 (2014)
Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Mag. Queue Process. 10(4), 40 (2012). https://doi.org/10.1145/2181796.2206309
CodeBlocks (2017, March 12). Retrieved from www.codeblocks.org
Sankari, M., Meena, C.: Estimation of dynamic background and object detection in noisy visual surveillance. In: International Journal of Advanced Computer Science and Applications, vol. 2(6) (2011)
Benezeth, Y., Jodoin, P.M., Emile, B., Laurent, H., Rosenberger, C.: Review and evaluation of commonly-implemented background subtraction algorithms. In: International Conference on Pattern Recognition (ICPR 2008), pp. 1−4 (2008)
Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: IEEE Workshop on Change Detection (CDW-2012), pp. 16−21 (2012)
Kalirajan, K., Sudha, M.: Moving object detection for video surveillance. Hindawi Publ. Corp. Sci. World J. 1−10 (2015). https://doi.org/10.1155/2015907469
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Singh, S., Prasad, A., Srivastava, K., Bhattacharya, S. (2020). Object Motion Detection Methods for Real-Time Video Surveillance: A Survey with Empirical Evaluation. In: Somani, A.K., Shekhawat, R.S., Mundra, A., Srivastava, S., Verma, V.K. (eds) Smart Systems and IoT: Innovations in Computing. Smart Innovation, Systems and Technologies, vol 141. Springer, Singapore. https://doi.org/10.1007/978-981-13-8406-6_63
Download citation
DOI: https://doi.org/10.1007/978-981-13-8406-6_63
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-8405-9
Online ISBN: 978-981-13-8406-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)