[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Object Motion Detection Methods for Real-Time Video Surveillance: A Survey with Empirical Evaluation

  • Conference paper
  • First Online:
Smart Systems and IoT: Innovations in Computing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 141))

Abstract

Automated moving object detection and analysis assumes a great significance in video surveillance. This article presents a comprehensive survey on the techniques of object-in-motion detection for video surveillance. In this paper, eight methods of object detection in video streams are implemented and evaluated empirically on five quality parameters for identifying the efficiency and effectiveness of these methods. For objective assessments of these methods, a standard dataset “CDnet2012” is used which consists of six different rigorous scenarios. In conclusion, an attempt has been made to identify the best method for different scenarios, employable in real-time video surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Green, M.W., Travis, J., Downs, R.: The appropriate and effective use of security technologies in U.S. Schools. U.S. Department of Justice, 810 Seventh Street N.W. Washington, DC 20531 (2014)

    Google Scholar 

  2. Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. (2014)

    Google Scholar 

  3. Parekh, H.S., Thakore, D.G., Jaliya, U.K.: A survey on object detection and tracking methods. Int. J. Innov. Res. Comput. Commun. Eng. 2(2)

    Google Scholar 

  4. Lin, D., Cao, D., Zeng, H.: Improving motion state change object detection by using block background context. UCKI 2014 (2014)

    Google Scholar 

  5. Lee, B., Hedley, M.: Background estimation for video surveillance. In: Image and Vision Computing, IVCNZ 2002, pp. 315−320. NZ (2002)

    Google Scholar 

  6. Colombari, A., Fusiello, A.: Patch-based background initialization in the heavily cluttered video. IEEE Trans. Image Process. 19(4), 926–933 (2010)

    Article  MathSciNet  Google Scholar 

  7. Mingwu, R., Han, S.: A practical method for moving target detection under complex background. Comput. Eng. 33–34 (2005)

    Google Scholar 

  8. Jiang, S., Zhao, Y.: Background extraction algorithm based on partition weighed histogram. In: IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC 2012, pp. 433−437 (2012)

    Google Scholar 

  9. Cheng, F., Huang, S., Ruan, S.: Advanced motion detection for intelligent video surveillance systems. In: ACM Symposium on Applied Computing. Lausanne, Switzerland (2010)

    Google Scholar 

  10. Yan, J., Yu, Y., Zhu, X., Lei, Z., Li, S.Z.: Object detection by labeling superpixels. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA (2015)

    Google Scholar 

  11. Li, X., Ng, M., Yuan, X.: Median filtering-based methods for static background extraction from surveillance video. Numerical Linear Algebra with Applications, Wiley Online Library (2015)

    Google Scholar 

  12. Ching, S., Cheung, S., Chandrika, K.: Robust techniques for background subtraction in urban traffic video. In: Proceedings SPIE 5308, Visual Communications and Image Processing, pp. 881 (2004). https://doi.org/10.1117/12.526886

  13. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  14. Stauffer, C., Grimson, W.E.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  15. Soh, Y., Hae, Y., Mehmood, A., Hadi Ashraf, R., Kim, I.: Performance evaluation of various functions for Kernel density estimation. Open J. Appl. Sci. 3(18), 58–64 (2013)

    Article  Google Scholar 

  16. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using non-parametric Kernel density estimation for visual surveillance. IEEE Proc. Comput. Vis. 90(7) (2002). https://doi.org/10.1109/JPROC.2002.801448

  17. Junejo, I., Bhutta, A., Foroosh, H.: Single class support vector machine (SVM) for scene modeling. J. Signal Image Video Proc. (2011)

    Google Scholar 

  18. Zhang, J., Tian, Y., Yang, Y., Zhu, C.: Robust foreground segmentation using subspace-based background model. In: Asia-Pacific Conference on Information Processing, APCIP 2009, vol. 2, pp. 214–217 (2009)

    Google Scholar 

  19. Li, Q., He, D., Wang, B.: Effective moving objects detection based on clustering background model for video surveillance. Congr. Image Signal Proc. CISP 2008(3), 656–660 (2008)

    Article  Google Scholar 

  20. Kumar, N.A., Sureshkumar, C.: Background subtraction based on threshold detection using modified K-means algorithm. In: International Conference on Pattern Recognition, Informatics and Mobile Engineering, Salem, pp. 378−382 (2013)

    Google Scholar 

  21. Xiao, M.: An improved background reconstruction algorithm based on basic sequential clustering. Inf. Technol. J. 7, 522–527 (2008)

    Article  Google Scholar 

  22. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Background modeling and subtraction by codebook construction. In: IEEE International Conference on Image Processing, ICIP 2004 (2004)

    Google Scholar 

  23. Badal, T., Nain, N., Ahmed, M., Sharma, V.: An improved multi-layer codebook model to eliminate ghost region. In: Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1–4. Patna (2015). https://doi.org/10.1109/NCVPRIPG.2015.749003

  24. Lin, H.H., Liu, T.L., Chuang, J.H.: A probabilistic SVM approach for background scene initialization. In: IEEE International Conference Image Processing, pp. 893−896 (2002)

    Google Scholar 

  25. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

  26. Baf, F.E., Bouwmans, T., Vachon, B.: Fuzzy integral for moving object detection. In: International Conference on Fuzzy Systems, FUZZ-IEEE, pp. 1729−1736 (2008)

    Google Scholar 

  27. Bouwmans, T.: Background subtraction for visual surveillance: a fuzzy approach. Handbook on Soft Computing for Video Surveillance. CRC Press, pp. 103−134 (2012)

    Google Scholar 

  28. Scott, J., Pusateri, A.M., Cornish, D.: Kalman filter based video background estimation. In: Applied Imagery Pattern Recognition Workshop (AIPRW), pp. 1−7. https://doi.org/10.1109/AIPR.2009.5466306

  29. Wang, B., Dudek, P.: A fast self-tuning background subtraction algorithm. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, pp. 401−404. https://doi.org/10.1109/CVPRW.2014.64

  30. Lu, X., Manduchi, R.: Fast image motion segmentation for surveillance applications. Image Vis. Comput. 29(2–3), 104–116 (2011)

    Article  Google Scholar 

  31. Chauhan, A.K., Krishan, P.: Moving object tracking using Gaussian mixture model and optical flow. In: International Journal of Advanced Research in Computer Science and Software Engineering (2013)

    Google Scholar 

  32. Shahbaz, A., Hariyono, J., Jo, K.: Evaluation of background subtraction algorithms for video surveillance. FCV 2015 (2015)

    Google Scholar 

  33. Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. In: Computer Vision and Image Understanding, CVIU 2014 (2014)

    Google Scholar 

  34. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with OpenCV. Mag. Queue Process. 10(4), 40 (2012). https://doi.org/10.1145/2181796.2206309

    Article  Google Scholar 

  35. CodeBlocks (2017, March 12). Retrieved from www.codeblocks.org

  36. Sankari, M., Meena, C.: Estimation of dynamic background and object detection in noisy visual surveillance. In: International Journal of Advanced Computer Science and Applications, vol. 2(6) (2011)

    Google Scholar 

  37. Benezeth, Y., Jodoin, P.M., Emile, B., Laurent, H., Rosenberger, C.: Review and evaluation of commonly-implemented background subtraction algorithms. In: International Conference on Pattern Recognition (ICPR 2008), pp. 1−4 (2008)

    Google Scholar 

  38. Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: IEEE Workshop on Change Detection (CDW-2012), pp. 16−21 (2012)

    Google Scholar 

  39. Kalirajan, K., Sudha, M.: Moving object detection for video surveillance. Hindawi Publ. Corp. Sci. World J. 1−10 (2015). https://doi.org/10.1155/2015907469

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, S., Prasad, A., Srivastava, K., Bhattacharya, S. (2020). Object Motion Detection Methods for Real-Time Video Surveillance: A Survey with Empirical Evaluation. In: Somani, A.K., Shekhawat, R.S., Mundra, A., Srivastava, S., Verma, V.K. (eds) Smart Systems and IoT: Innovations in Computing. Smart Innovation, Systems and Technologies, vol 141. Springer, Singapore. https://doi.org/10.1007/978-981-13-8406-6_63

Download citation

Publish with us

Policies and ethics