[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Transfer Learning Based Human Anomaly Detection in Videos

  • Conference paper
  • First Online:
Data Science and Applications (ICDSA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 818))

Included in the following conference series:

  • 309 Accesses

Abstract

In the present era, the crime rates increase day by day, in such situations, humans keep security as a topmost priority in their daily lives. As a result, the demands of surveillance system surge for public, private, and remote areas. With that scenario, anomaly detection systems are gaining more attention in the domain of computer vision. Various machine (ML) and deep learning (DL) based approaches have been presented for anomaly detection over decades but still, this framework is a challenging task because of many reasons, one of them being the vague quality of content in the video. Transfer learning (TL) plays a key role by providing already trained information to gain good accuracy. This paper is divided into three parts: the first part comprises the study of deep and machine for violent and abnormal activities detection. In the second part, a basic architecture of transfer learning-based framework for anomaly detection along with TL approaches is presented. The final section compares machine learning and deep learning algorithms for the publicly available benchmark datasets based on accuracy achieved. The main obstacles encountered while utilizing this technique are also mentioned in accordance with study and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Franklin, R. J., & Dabbagol, V. (2020). Anomaly detection in videos for video surveillance applications using neural networks. In 2020 Fourth International Conference on Inventive Systems and Controls (ICISC) (p. 632). IEEE.

    Google Scholar 

  2. Sellat, H. (2019). Anomaly detection in videos using LSTM convolutional autoencoder. https://towardsdatascience.com/prototyping-an-anomaly-detection-system-for-videos-step-by-step-using-lstm-convolutional-4e06b7dcdd29. Last accessed 25 April.

  3. Garg, A., Nigam, S., & Singh, R. (2022). Vision based human activity recognition using hybrid deep learning. In 2022 International Conference on Connected Systems & Intelligence (CSI) (pp. 1–6). IEEE.

    Google Scholar 

  4. Dhiman, C., & Vishwakarma, D. K. (2019). A review of state-of-the-art techniques for abnormal human activity recognition. Engineering Applications of Artificial Intelligence, 77, 21–45.

    Article  Google Scholar 

  5. Sreenu, G., & Durai, S. (2019). Intelligent video surveillance: A review through deep learning techniques for crowd analysis. Journal of Big Data, 6(1), 1–27.

    Article  Google Scholar 

  6. Patrikar, D. R., & Parate, M. R. (2022). Anomaly detection using edge computing in video surveillance system. International Journal of Multimedia Information Retrieval, 11(2), 85–110.

    Article  Google Scholar 

  7. Şengönül, E., Samet, R., Abu Al-Haija, Q., Alqahtani, A., Alturki, B., & Alsulami, A. A. (2023). An analysis of artificial intelligence techniques in surveillance video anomaly detection: A comprehensive survey. Applied Sciences, 13(8), 4956.

    Article  Google Scholar 

  8. Suarez, J. J. P., & Naval Jr, P. C. (2020). A survey on deep learning techniques for video anomaly detection. arXiv preprint arXiv:2009.14146.

  9. Nayak, R., Pati, U. C., & Das, S. K. (2021). A comprehensive review on deep learning-based methods for video anomaly detection. Image and Vision Computing, 106, 104178.

    Article  Google Scholar 

  10. Sánchez, F. L., Hupont, I., Tabik, S., & Herrera, F. (2020). Revisiting crowd behaviour analysis through deep learning: Taxonomy, anomaly detection, crowd emotions, datasets, opportunities and prospects. Information Fusion, 64, 318–335.

    Article  Google Scholar 

  11. Chandrakala, S., Deepak, K., & Revathy, G. (2022). Anomaly detection in surveillance videos: A thematic taxonomy of deep models, review and performance analysis. Artificial Intelligence Review, 56(4), 3319–3368.

    Article  Google Scholar 

  12. Ramzan, M., Abid, A., Khan, H. U., Awan, S. M., Ismail, A., Ahmed, M., Ilyas, M., & Mahmood, A. (2019). A review on state-of-the-art violence detection techniques. IEEE Access, 7, 107560–107575.

    Google Scholar 

  13. Li, J., Jiang, X., Sun, T., & Xu, K. (2019). Efficient violence detection using 3D convolutional neural networks. In 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–8). IEEE.

    Google Scholar 

  14. Nguyen, T. N., & Meunier, J. (2019) Hybrid deep network for anomaly detection. arXiv preprint arXiv: 1908.06347.

    Google Scholar 

  15. Mangai, P., Geetha, M. K., & Kumaravelan, G. (2022). Temporal features-based anomaly detection from surveillance video using deep learning techniques. In 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS) (pp. 490–497). IEEE.

    Google Scholar 

  16. Haldar, R., & Chatterjee, R. (2020). CNN-BiLSTM model for violence detection in smart surveillance. SN Computer Science, 1(4), 201.

    Article  Google Scholar 

  17. Fenil, E., Manogaran, G., Vivekananda, G. N., Thanjaivadivel, T., Jeeva, S., & Ahilan, A. J. C. N. (2019). Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional LSTM. Computer Networks, 151, 191–200.

    Article  Google Scholar 

  18. Lohithashva, B. H., & Aradhya, V. M. (2021). Violent video event detection: a local optimal oriented pattern based approach. In Applied Intelligence and Informatics: First International Conference, All 2021, Proceeding 1 (pp. 268–280). Nottingham, UK: Springer International Publishing.

    Google Scholar 

  19. Sahay, K. B., Balachandar, B., Jagadeesh, B., Kumar, G. A., Kumar, R., & Parvathy, L. R. (2022). A real time crime scene intelligent video surveillance systems in violence detection framework using deep learning technique. Computers and Electrical Engineering, 103, 108319.

    Article  Google Scholar 

  20. Nojor, V. V., Austria, J. A. C., Galit, A.A., Guevarra, J. T. B., Jogno, K. Q., Venal, M. C. A., & Somao-i, M. J. F. (2022). Design of a deep learning -based detection system for criminal activities. In 2022 3rd International Informatics and Software Engineering Conference (IISEC) (pp. 1–5). IEEE.

    Google Scholar 

  21. Pawar, K., & Attar, V. (2021). Application of deep learning for crowd anomaly detection from surveillance videos. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 506–511). IEEE.

    Google Scholar 

  22. Chang, C. W., Chang, C. Y., & Lin, Y. Y. (2022). A hybrid CNN and LSTM-based deep learning model for abnormal behavior detection. Multimedia Tools and Applications, 81(9), 11825–11843.

    Article  Google Scholar 

  23. Chang, Y., Tu, Z., Xie, W., & Yuan, J. (2020). Clustering driven deep autoencoder for video anomaly detection. In Computer Vision—ECCV 2020: 16th European Conference, Proceedings, Part XV 16 (pp. 329–345). Springer International Publishing.

    Google Scholar 

  24. Kotkar, V. A., & Sucharita, V. (2023). Fast anomaly detection in video surveillance system using robust spatiotemporal and deep learning methods. Multimedia Tools and Applications, 1–28.

    Google Scholar 

  25. Razaee, K., Khosravi, M. R., & Anari, M. S. (2022). Deep-Transfer-learning-based abnormal behavior recognition using internet of drones for crowded scenes. IEEE Internet of Things Magazine, 5(2), 41–44.

    Article  Google Scholar 

  26. Jones, M. T. (2019). Transfer learning for deep learning. https://developer.ibm.com/articles/transfer-learning-for-deep-learning/. Last accessed 27 April 2023.

  27. Nasaruddin, N., Muchtar, K., Afdhal, A., & Dwiyantoro, A. P. J. (2020). Deep anomaly detection through visual attention in surveillance videos. Journal of Big Data, 7(1), 1–17.

    Article  Google Scholar 

  28. Al-Dhamari, A., Sudirman, R., & Mahmood, N. H. (2020). Transfer deep learning along with binary support vector machine for abnormal behavior detection. IEEE Access, 8, 61085–61095.

    Article  Google Scholar 

  29. Sahoo, S. R., Dash, R., Mahapatra, R. K., & Sahu, B. (2019). Unusual event detection in surveillance video using transfer learning. In 2019 International Conference on Information Technology (ICIT) (pp. 319–324). IEEE.

    Google Scholar 

  30. Vosta, S., & Yow, K. C. (2022). A CNN-RNN combined structure for real-world violence detection in surveillance cameras. Applied Sciences, 12(3), 1021.

    Article  Google Scholar 

  31. Ullah, W., Ullah, A., Hussain, T., Muhammad, K., Heidari, A. A., Del Ser, J., Baik, S. W., & De Albuquerque, V. H. C. (2022). Artificial intelligence of things-assisted two-stream neural network for anomaly detection in surveillance big video data. Future Generation Computer Systems, 129, 286–297.

    Article  Google Scholar 

  32. Khan, S. U., Haq, I. U., Rho, S., Baik, S. W., & Lee, M. Y. (2019). Cover the violence: A novel deep-learning-based approach towards violence-detection in movies. Applied Sciences, 9(22), 4963.

    Article  Google Scholar 

  33. Ullah, W., Ullah, A., Haq, I. U., Muhammad, K., Sajjad, M., & Baik, S. W. (2021). CNN features with bi-directional LSTM for real-time anomaly detection in surveillance networks. Multimedia Tools and Applications, 80, 16979–16995.

    Article  Google Scholar 

  34. Qasim, M., & Verdu, E. (2023). Video anomaly detection system using deep convolutional and recurrent models. Results in Engineering, 18, 101026.

    Article  Google Scholar 

  35. Varghese, E. B., Thampi, S. M., & Berretti, S. (2023). A psychologically inspired fuzzy cognitive deep learning framework to protect crowd behavior. IEEE Transactions on Affective Computing, 13(2), 1005–1022.

    Article  Google Scholar 

  36. Choudhary, R., & Solanki, A. (2022). Violence detection in videos using transfer learning and LSTM. In Advances in Data Computing, Communication and Security: Proceedings of I3CS2021 (pp. 51–62). Springer Nature Singapore

    Google Scholar 

  37. Abbas, Z. K., & Al-Ani, A. A. (2022). Anomaly detection in surveillance videos based on H265 and deep learning. International Journal of Advanced Technology and Engineering Exploration, 9(92), 910.

    Google Scholar 

  38. Maqsood, R., Bajwa, U. I., Saleem, G., Raza, R. H., & Anwar, M. W. (2021). Anomaly recognition from surveillance videos using 3D convolutional neural networks. Multimedia Tools and Applications, 80(12), 18693–18716.

    Article  Google Scholar 

  39. Zaheer, M. Z., Lee, J. H., Astrid, M., Mahmood, A., & Lee, S. I. (2021). Cleaning label noise with clusters for minimally supervised anomaly detection. arXiv preprint arXiv: 2104.14770.

    Google Scholar 

  40. Gutoski, M., Ribeiro, M., Hattori, L. T., Romero, M., Lazzaretti, A. E., & Lopes, H. S. (2021). A comparative study of transfer learning approaches for video anomaly detection. International Journal of Pattern Recognition and Artificial Intelligence, 30(05), 2152003.

    Article  Google Scholar 

  41. Sabih, M., & Vishwakarma, D. K. (2022). A novel framework for the detection of motion and appearance-based anomaly using ensemble learning and LSTMs. Expert Systems with Applications, 192, 116394.

    Article  Google Scholar 

  42. Hamdi, S., Bouindour, S., Loukil, K., Snoussi, H., & Abid, M. (2019). Hybrid deep learning and HOF for anomaly detection. In 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 575–580). IEEE.

    Google Scholar 

  43. Doshi, K., & Yilmaz, Y. (2020). Any-shot sequential anomaly detection in surveillance videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 1–6).

    Google Scholar 

  44. Ekanayake, E. M. C. L., Lei, Y., & Li, C. (2022). Crowd density level estimation and anomaly detection using multicolumn multistage bilinear convolution attention network (MCMS-BCNN-Attention). Applied Sciences, 13(1), 248.

    Article  Google Scholar 

  45. Alafif, T., Hadi, A., Allahyani, M., Alzahrani, B., Alhothali, A., Alotaibi, R., & Barnawi, A. (2023). Hybrid classifiers for spatio-temporal abnormal behavior detection, tracking, and recognition in massive Hajj crowds. Electronics, 12(5), 1165.

    Article  Google Scholar 

  46. Doshi, K., & Yilmaz, Y. (2020). Continual learning for anomaly detection in surveillance videos. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition Workshops (pp. 1–10).

    Google Scholar 

  47. Ullah, F. U. M., Ullah, A., Muhammad, K., Haq, I. U., & Baik, S. W. (2019). Violence detection using spatiotemporal features with 3D convolutional neural networks. Sensors, 19(11), 2472.

    Article  Google Scholar 

  48. Soliman, M.M., Kamal, M.H., Nashad, E. M., Mostafa, Y. M., Chawky, B. S., & Khattab, D. (2019). Violence recognition from videos using deep learning techniques. In 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS) (pp. 80–85). IEEE.

    Google Scholar 

  49. Wu, P., Liu, J., & Shen, F. (2019). A deep one-class neural network for anomalous event detection in complex scenes. IEEE Transitions on Neural Networks and Learning Systems, 31(7), 2609–2622.

    Google Scholar 

  50. Bansod, S., & Nandedkar, A. (2019). Transfer learning for video anomaly detection. Journal of Intelligent & Fuzzy Systems, 36(3), 1967–1975.

    Article  Google Scholar 

  51. Amrutha, C. V., Jyotsna, C., & Amudha, J. (2020). Deep learning approach for suspicious activity detection from surveillance video. In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 335–339). IEEE.

    Google Scholar 

  52. Aktı, Ş., Tataroğlu, G. A., & Ekenel, H. K. (2019). Vision-based fight detection from surveillance cameras. In: 2019 Ninth International Conference on Image processing Theory, Tools and Applications (IPTA) (pp. 1–6). IEEE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garg, A., Nigam, S., Singh, R. (2024). Towards Transfer Learning Based Human Anomaly Detection in Videos. In: Nanda, S.J., Yadav, R.P., Gandomi, A.H., Saraswat, M. (eds) Data Science and Applications. ICDSA 2023. Lecture Notes in Networks and Systems, vol 818. Springer, Singapore. https://doi.org/10.1007/978-981-99-7862-5_31

Download citation

Publish with us

Policies and ethics