[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Deploying Mobile Deep Learning to Segment COVID-19 PCR Test Tube Images

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14403))

Included in the following conference series:

  • 287 Accesses

Abstract

Effective detection of the COVID-19 pandemic is essential for timely disease treatment and prevention. This work studies compact deep-learning models executed on mobile devices for segmenting COVID-19 RT-PCR test tube images, a crucial image-processing step preceding higher-level tasks. Since the device resource constraints and the need for rapid results necessitate compact and streamlined models with reasonable accuracy, we employ the hyperparameter width multiplier \(\alpha \) to the trainable components in the two deep learning models based on the U-Net architecture, including MobileNetV2 and Xception. Our new compact models, called \(\alpha \)-MobileNetV2 and \(\alpha \)-Xception, facilitate the progressive simplification of the U-Net model structures, maintaining high accuracy. By varying the width multiplier \(\alpha \), we explore diverse training conditions for the models, analyzing the model size and its performance. The final model achieves a \(3.2 \times \) reduction in size and \(3 \times \) faster inference, with merely a 1.2% loss in accuracy compared to standard MobileNetV2 on segmenting COVID-19 PCR test tube images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anisuzzaman, D.M., Patel, Y., Niezgoda, J.A., Gopalakrishnan, S., Yu, Z.: A mobile app for wound localization using deep learning. IEEE Access 10, 61398–61409 (2022)

    Article  Google Scholar 

  2. Castanyer, R.C., Martínez-Fernández, S., Franch, X.: Integration of convolutional neural networks in mobile applications. In: 1st IEEE/ACM Workshop on AI Engineering - Software Engineering for AI, WAIN@ICSE 2021, Madrid, Spain, 30–31 May 2021, pp. 27–34 (2021)

    Google Scholar 

  3. Chen, Y., Yang, T., Emer, J.S., Sze, V.: Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices. IEEE J. Emerg. Sel. Topics Circuits Syst. 9(2), 292–308 (2019)

    Google Scholar 

  4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR, pp. 1800–1807 (2017)

    Google Scholar 

  5. Gutierrez-Lazcano, L., Camacho-Bello, C.J., Cornejo-Velazquez, E., Arroyo-Nunez, J.H., Clavel-Maqueda, M.: Cuscuta spp. segmentation based on unmanned aerial vehicles (UAVs) and orthomasaics using a U-net xception-style model. Remote Sens. 14(17), 4315 (2022)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  7. Heithoff, D.M., et al.: Assessment of a smartphone-based loop-mediated isothermal amplification assay for detection of SARS-CoV-2 and influenza viruses. JAMA Netw. Open 5(1), e2145669–e2145669 (2022)

    Google Scholar 

  8. Hossain, M.D., Chen, D.: Segmentation for object-based image analysis (OBIA): a review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote. Sens. 150, 115–134 (2019)

    Article  Google Scholar 

  9. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)

    Google Scholar 

  10. Huang, L., Ruan, S., Denoeux, T.: Application of belief functions to medical image segmentation: a review. Inf. Fusion 91, 737–756 (2023)

    Article  Google Scholar 

  11. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the U-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  12. Khan, M.Z., Gajendran, M.K., Lee, Y., Khan, M.A.: Deep neural architectures for medical image semantic segmentation: review. IEEE Access 9, 83002–83024 (2021)

    Article  Google Scholar 

  13. Khan, S.H., Rahmani, H., Shah, S.A.A., Bennamoun, M.: A Guide to Convolutional Neural Networks for Computer Vision. Morgan & Claypool Publishers, San Rafael (2018)

    Google Scholar 

  14. Kirillov, A., et al.: Segment anything. CoRR abs/2304.02643 (2023)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  16. Lei, T.: Image Segmentation: Principles, Techniques, and Applications. Hoboken, NJ (2023)

    Google Scholar 

  17. Lucas, A.M., Ryder, P., Li, B., Cimini, B.A., Eliceiri, K.W., Carpenter, A.E.: Open-source deep-learning software for bioimage segmentation. Mol. Biol. Cell 32(9), 823–829 (2021)

    Article  Google Scholar 

  18. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2022)

    Google Scholar 

  19. Mo, Y., Wu, Y., Yang, X., Liu, F., Liao, Y.: Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 493, 626–646 (2022)

    Article  Google Scholar 

  20. Mukherjee, G., Chatterjee, A., Tudu, B.: Identification of the types of disease for tomato plants using a modified gray wolf optimization optimized mobilenetv2 convolutional neural network architecture driven computer vision framework. Concurr. Comput. Pract. Exp. 34(22) (2022)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  23. Summers, G., Lim, A., Wheeler, A.J.: A characterisation of benthic currents from seabed bathymetry: an object-based image analysis of cold-water coral mounds. Remote. Sens. 14(19), 4731 (2022)

    Article  Google Scholar 

  24. Torres, R.N., Fraternali, P., Romero, J.: ODIN: an object detection and instance segmentation diagnosis framework. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020, Part VI. LNCS, vol. 12540, pp. 19–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_3

    Chapter  Google Scholar 

  25. Wu, X., Hong, D., Chanussot, J.: UIU-NET: U-net in U-net for infrared small object detection. IEEE Trans. Image Process. 32, 364–376 (2023)

    Article  Google Scholar 

  26. Yang, Q., Zhang, Y., Dai, W., Pan, S.J.: Transfer Learning in Computer Vision, pp. 221–233. Cambridge University Press, Cambridge (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiang, T., Dean, R., Zhao, J., Pham, N. (2024). On Deploying Mobile Deep Learning to Segment COVID-19 PCR Test Tube Images. In: Yan, W.Q., Nguyen, M., Nand, P., Li, X. (eds) Image and Video Technology. PSIVT 2023. Lecture Notes in Computer Science, vol 14403. Springer, Singapore. https://doi.org/10.1007/978-981-97-0376-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0376-0_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0375-3

  • Online ISBN: 978-981-97-0376-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics