Abstract
In this paper, we address the crucial task of brain tumor segmentation in medical imaging and propose innovative approaches to enhance its performance. The current state-of-the-art nnU-Net has shown promising results but suffers from extensive training requirements and underutilization of pre-trained weights. To overcome these limitations, we integrate Axial-Coronal-Sagittal convolutions and pre-trained weights from ImageNet into the nnU-Net framework, resulting in reduced training epochs, reduced trainable parameters, and improved efficiency. Two strategies for transferring 2D pre-trained weights to the 3D domain are presented, ensuring the preservation of learned relationships and feature representations critical for effective information propagation. Furthermore, we explore a joint classification and segmentation model that leverages pre-trained encoders from a brain glioma grade classification proxy task, leading to enhanced segmentation performance, especially for challenging tumor labels. Experimental results demonstrate that our proposed methods in the fast training settings achieve comparable or even outperform the ensemble of cross-validation models, a common practice in the brain tumor segmentation literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baid, U., et al.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
Chen, S., Ma, K., Zheng, Y.: Med3D: transfer learning for 3D medical image analysis. arXiv preprint arXiv:1904.00625 (2019)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE CVPR, pp. 248–255. IEEE (2009)
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol. 12962, pp. 272–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_22
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE ICCV, pp. 1026–1034 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE CVPR, pp. 7132–7141 (2018)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No New-Net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21
Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS Challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22
Luu, H.M., Park, S.H.: Extending nn-UNet for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol. 12963, pp. 173–186. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-09002-8_16
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE TMI 34(10), 1993–2024 (2015)
MIC-DKFZ: nnUNet. https://github.com/MIC-DKFZ/nnUNet (2023)
Myronenko, A.: 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Pati, S., et al.: GaNDLF: the generally nuanced deep learning framework for scalable end-to-end clinical workflows. Commun. Eng. 2(1), 23 (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11
Wu, Y.H., et al.: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. IEEE Tip 30, 3113–3126 (2021)
Yang, J., et al.: Reinventing 2D convolutions for 3D images. IEEE JBHI 25(8), 3009–3018 (2021)
Zeineldin, R.A., Karar, M.E., Burgert, O., Mathis-Ullrich, F.: Multimodal CNN networks for brain tumor segmentation in MRI: a brats 2022 challenge solution. arXiv preprint arXiv:2212.09310 (2022)
Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)
Acknowledgment
This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number DS2020-42-01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Huynh, TL., Le, TD., Nguyen, T.V., Le, TN., Tran, MT. (2024). Efficient 3D Brain Tumor Segmentation with Axial-Coronal-Sagittal Embedding. In: Yan, W.Q., Nguyen, M., Nand, P., Li, X. (eds) Image and Video Technology. PSIVT 2023. Lecture Notes in Computer Science, vol 14403. Springer, Singapore. https://doi.org/10.1007/978-981-97-0376-0_11
Download citation
DOI: https://doi.org/10.1007/978-981-97-0376-0_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0375-3
Online ISBN: 978-981-97-0376-0
eBook Packages: Computer ScienceComputer Science (R0)