Abstract
Motor imagery classification based on electroencephalography (EEG) signals is one of the most important brain-computer interface applications, although it need further improvement. Several methods have attempted to obtain useful information from EEG signals by using recent deep learning techniques such as transformers. To improve the classification accuracy, this study proposes a novel EEG-based motor imagery classification method with three key features: generation of a topological map represented as a two-dimensional image from EEG signals with coordinate transformation based on t-SNE, use of the InternImage to extract spatial features, and use of spatiotemporal pooling inspired by PoolFormer to exploit spatiotemporal information concealed in a sequence of EEG images. Experimental results using the PhysioNet EEG Motor Movement/Imagery dataset showed that the proposed method achieved the best classification accuracy of 88.57%, 80.69%, and 70.20% on two-, three-, and four-class motor imagery tasks in cross-individual validation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alfeld, P.: A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Des. 1(2), 169–181 (1984). https://doi.org/10.1016/0167-8396(84)90029-3
Ali, O., Saif-ur Rehman, M., Glasmachers, T., Iossifidis, I., Klaes, C.: ConTraNet: A single end-to-end hybrid network for EEG-based and EMG-based human machine interfaces. arXiv preprint arXiv:2206.10677 (2022). 10.48550/arXiv.2206.10677
Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S.U., Altuwaijri, G.A., Abdul, W., Bencherif, M.A., Faisal, M.: Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review. Neural Comput. Appl. , 1–42 (2021). https://doi.org/10.1007/s00521-021-06352-5
Amin, S.U., Alsulaiman, M., Muhammad, G., Bencherif, M.A., Hossain, M.S.: Multilevel Weighted Feature Fusion Using Convolutional Neural Networks for EEG Motor Imagery Classification. IEEE Access 7, 18940–18950 (2019). https://doi.org/10.1109/ACCESS.2019.2895688
Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks. In: ICLR. pp. 1–15 (2016)
Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI Competition 2008–Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology 16, 1–6 (2008)
Carlson, T., del R. Millan, J.: Brain-Controlled Wheelchairs: A Robotic Architecture. IEEE Robot. Autom. Mag. 20(1), 65–73 (2013). 10.1109/MRA.2012.2229936
Cho, H., Ahn, M., Ahn, S., Kwon, M., Jun, S.C.: EEG datasets for motor imagery brain-computer interface. GigaScience 6(7), gix034 (2017). 10.1093/gigascience/gix034
Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019). https://doi.org/10.1088/1741-2552/ab0ab5
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated data augmentation with a reduced search space. In: CVPR. pp. 702–703 (2020)
Dose, H., Møller, J.S., Iversen, H.K., Puthusserypady, S.: An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst. Appl. 114, 532–542 (2018). https://doi.org/10.1016/j.eswa.2018.08.031
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In: ICLR (2021)
Du, Y., Xu, Y., Wang, X., Liu, L., Ma, P.: EEG temporal-spatial transformer for person identification. Sci. Rep. 12(1), 14378 (2022). https://doi.org/10.1038/s41598-022-18502-3
Ehrsson, H.H., Geyer, S., Naito, E.: Imagery of Voluntary Movement of Fingers, Toes, and Tongue Activates Corresponding Body-Part-Specific Motor Representations. J. Neurophysiol. 90(5), 3304–3316 (2003). https://doi.org/10.1152/jn.01113.2002
Fadel, W., Kollod, C., Wahdow, M., Ibrahim, Y., Ulbert, I.: Multi-Class Classification of Motor Imagery EEG Signals Using Image-Based Deep Recurrent Convolutional Neural Network. In: BCI. pp. 1–4 (2020). 10.1109/BCI48061.2020.9061622
Farooq, F., Rashid, N., Farooq, A., Ahmed, M., Zeb, A., Iqbal, J.: Motor Imagery based Multivariate EEG Signal Classification for Brain Controlled Interface Applications. In: ICOM. pp. 1–6. IEEE (2019). 10.1109/ICOM47790.2019.8952008
Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23), e215–e220 (2000). https://doi.org/10.1161/01.CIR.101.23.e215
Jeong, J.H., Lee, B.H., Lee, D.H., Yun, Y.D., Lee, S.W.: EEG Classification of Forearm Movement Imagery Using a Hierarchical Flow Convolutional Neural Network. IEEE Access 8, 66941–66950 (2020). https://doi.org/10.1109/ACCESS.2020.2983182
Ji, Y., Li, F., Fu, B., Zhou, Y., Wu, H., Li, Y., Li, X., Shi, G.: A novel hybrid decoding neural network for EEG signal representation. Pattern Recognition p. 110726 (2024). https://doi.org/10.1016/j.patcog.2024.110726
Kant, P., Laskar, S.H., Hazarika, J., Mahamune, R.: CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces. J. Neurosci. Methods 345, 108886 (2020). https://doi.org/10.1016/j.jneumeth.2020.108886
Kataoka, H., Okayasu, K., Matsumoto, A., Yamagata, E., Yamada, R., Inoue, N., Nakamura, A., Satoh, Y.: Pre-Training Without Natural Images. Int. J. Comput. Vision 130(4), 990–1007 (2022). https://doi.org/10.1007/s11263-021-01555-8
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2015)
Kostas, D., Aroca-Ouellette, S., Rudzicz, F.: BENDR: Using Transformers and a Contrastive Self-Supervised Learning Task to Learn From Massive Amounts of EEG Data. Front. Hum. Neurosci. 15, 653659 (2021). https://doi.org/10.3389/fnhum.2021.653659
Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015). https://doi.org/10.1126/science.aab3050
Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018). https://doi.org/10.1088/1741-2552/aace8c
Leeb, R., Brunner, C., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI Competition 2008-Graz data set B. Graz University of Technology, Austria 16, 1–6 (2008)
Li, M.A., Han, J.F., Duan, L.J.: A Novel MI-EEG Imaging With the Location Information of Electrodes. IEEE Access 8, 3197–3211 (2019). https://doi.org/10.1109/ACCESS.2019.2962740
Li, M.a., Luo, X.y., Yang, J.f.: Extracting the nonlinear features of motor imagery EEG using parametric t-SNE. Neurocomputing 218, 371–381 (2016). 10.1016/j.neucom.2016.08.083
Liu, T., Yang, D.: A Densely Connected Multi-Branch 3D Convolutional Neural Network for Motor Imagery EEG Decoding. Brain Sci. 11(2), 197 (2021). https://doi.org/10.3390/brainsci11020197
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In: ICCV. pp. 9992–10002 (2021). 10.1109/ICCV48922.2021.00986
Luo, T.j., Zhou, C.l., Chao, F.: Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinf. 19(1) (2018). 10.1186/s12859-018-2365-1
López-Larraz, E., Sarasola-Sanz, A., Irastorza-Landa, N., Birbaumer, N., Ramos-Murguialday, A.: Brain-machine interfaces for rehabilitation in stroke: A review. NeuroRehabilitation 43(1), 77–97 (2018). https://doi.org/10.3233/nre-172394
Ma, Q., Wang, M., Hu, L., Zhang, L., Hua, Z.: A Novel Recurrent Neural Network to Classify EEG Signals for Customers’ Decision-Making Behavior Prediction in Brand Extension Scenario. Front. Hum. Neurosci. 15, 610890 (2021). https://doi.org/10.3389/fnhum.2021.610890
Ma, X., Qiu, S., Wei, W., Wang, S., He, H.: Deep Channel-Correlation Network for Motor Imagery Decoding From the Same Limb. IEEE Trans. Neural Syst. Rehabil. Eng. 28(1), 297–306 (2020). https://doi.org/10.1109/TNSRE.2019.2953121
Van der Maaten, L., Hinton, G.: Visualizing Data using t-SNE. JMLR 9(86), 2579–2605 (2008)
McInnes, L., Healy, J., Saul, N., Großberger, L.: UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw. 3(29), 861 (2018). 10.21105/joss.00861
Olivas-Padilla, B.E., Chacon-Murguia, M.I.: Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl. Soft Comput. 75, 461–472 (2019). https://doi.org/10.1016/j.asoc.2018.11.031
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. JMLR 12, 2825–2830 (2011)
Planelles, D., Hortal, E., Costa, Á., Úbeda, A., Iáñez, E., Azorín, J.M.: Evaluating Classifiers to Detect Arm Movement Intention from EEG Signals. Sensors 14(10), 18172–18186 (2014). https://doi.org/10.3390/s141018172
Roots, K., Muhammad, Y., Muhammad, N.: Fusion Convolutional Neural Network for Cross-Subject EEG Motor Imagery Classification. Computers 9(3), 72 (2020). https://doi.org/10.3390/computers9030072
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., Wolpaw, J.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004). https://doi.org/10.1109/TBME.2004.827072
Song, Y., Jia, X., Yang, L., Xie, L.: Transformer-based Spatial-Temporal Feature Learning for EEG Decoding. arXiv preprint arXiv:2106.11170 (2021). 10.48550/arXiv.2106.11170
Sun, J., Cao, R., Zhou, M., Hussain, W., Wang, B., Xue, J., Xiang, J.: A hybrid deep neural network for classification of schizophrenia using EEG Data. Sci. Rep. 11(1), 4706 (2021)
Tabar, Y.R., Halici, U.: A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14(1), 016003 (2016). https://doi.org/10.1088/1741-2560/14/1/016003
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is All you Need. In: NeurIPS. vol. 30 (2017)
Wairagkar, M., Hayashi, Y., Nasuto, S.J.: Modeling the Ongoing Dynamics of Short and Long-Range Temporal Correlations in Broadband EEG During Movement. Front. Syst. Neurosci. 13, 66 (2019). https://doi.org/10.3389/fnsys.2019.00066
Wairagkar, M., Hayashi, Y., Nasuto, S.J.: Dynamics of Long-Range Temporal Correlations in Broadband EEG During Different Motor Execution and Imagery Tasks. Front. Neurosci. 15 (2021). 10.3389/fnins.2021.660032
Wang, P., Jiang, A., Liu, X., Shang, J., Zhang, L.: LSTM-Based EEG Classification in Motor Imagery Tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 26(11), 2086–2095 (2018). https://doi.org/10.1109/TNSRE.2018.2876129
Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D.F., Chao, L.S.: Learning Deep Transformer Models for Machine Translation. In: ACCL (2019). 10.18653/v1/p19-1176
Wang, W., Dai, J., Chen, Z., Huang, Z., Li, Z., Zhu, X., Hu, X., Lu, T., Lu, L., Li, H., et al.: InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions. In: CVPR. pp. 14408–14419 (2023). 10.1109/cvpr52729.2023.01385
Wang, Z., Cao, L., Zhang, Z., Gong, X., Sun, Y., Wang, H.: Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition. Concurrency Comput. Pract. Exp. 30(23), e4413 (2018). https://doi.org/10.1002/cpe.4413
Wei, Y., Liu, Y., Li, C., Cheng, J., Song, R., Chen, X.: TC-Net: A Transformer Capsule Network for EEG-based emotion recognition. Comput. Biol. Med. 152, 106463 (2023). https://doi.org/10.1016/j.compbiomed.2022.106463
Xie, J., Zhang, J., Sun, J., Ma, Z., Qin, L., Li, G., Zhou, H., Zhan, Y.: A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2126–2136 (2022). https://doi.org/10.1109/TNSRE.2022.3194600
Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., Xu, G., Li, H., Zeng, H.: Wavelet Transform Time-Frequency Image and Convolutional Network-Based Motor Imagery EEG Classification. IEEE Access 7, 6084–6093 (2018). https://doi.org/10.1109/ACCESS.2018.2889093
Yang, J., Yao, S., Wang, J.: Deep Fusion Feature Learning Network for MI-EEG Classification. IEEE Access 6, 79050–79059 (2018). https://doi.org/10.1109/ACCESS.2018.2877452
Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng, J., Yan, S.: MetaFormer is Actually What You Need for Vision. In: CVPR. pp. 10819–10829 (2022). 10.1109/cvpr52688.2022.01055
Yu, Y., Zhou, Z., Yin, E., Jiang, J., Tang, J., Liu, Y., Hu, D.: Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface. Comput. Biol. Med. 77, 148–155 (2016). https://doi.org/10.1016/j.compbiomed.2016.08.010
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. In: ICCV. pp. 6023–6032 (2019)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond Empirical Risk Minimization. In: ICLR (2017)
Zhang, X., Yao, L., Kanhere, S.S., Liu, Y., Gu, T., Chen, K.: MindID: Person Identification from Brain Waves through Attention-based Recurrent Neural Network. IMWUT 2(3), 1–23 (2018). https://doi.org/10.1145/3264959
Zhao, X., Zhao, J., Liu, C., Cai, W.: Deep Neural Network with Joint Distribution Matching for Cross-Subject Motor Imagery Brain-Computer Interfaces. Biomed. Res. Int. 2020, 1–15 (2020). https://doi.org/10.1155/2020/7285057
Zhao, X., Zhang, H., Zhu, G., You, F., Kuang, S., Sun, L.: A Multi-Branch 3D Convolutional Neural Network for EEG-Based Motor Imagery Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 27(10), 2164–2177 (2019). https://doi.org/10.1109/TNSRE.2019.2938295
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 Million Image Database for Scene Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018). https://doi.org/10.1109/TPAMI.2017.2723009
Zhu, K., Wang, S., Zheng, D., Dai, M.: Study on the effect of different electrode channel combinations of motor imagery EEG signals on classification accuracy. J. Eng. 2019(23), 8641–8645 (2019). https://doi.org/10.1049/joe.2018.9073
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Fukushima, T., Miyamoto, R. (2025). Spatiotemporal Pooling on Appropriate Topological Maps Represented as Two-Dimensional Images for EEG Classification. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15473. Springer, Singapore. https://doi.org/10.1007/978-981-96-0901-7_4
Download citation
DOI: https://doi.org/10.1007/978-981-96-0901-7_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0900-0
Online ISBN: 978-981-96-0901-7
eBook Packages: Computer ScienceComputer Science (R0)