[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PARNet: Aortic Reconstruction from Orthogonal X-Rays Using Pre-trained Generative Adversarial Networks

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Abstract

The three-dimensional reconstruction of the aorta plays a crucial role in assisting minimally invasive vascular interventions to treat coronary artery disease, aiding surgeons in finding the optimal procedural angles for locating and delivering intervention devices. However, existing reconstruction methods face challenges such as weak imaging capability for low-density tissues in X-rays, limiting the accurate capture and reconstruction of the aorta and other blood vessels. To address these challenges, we propose PARNet, a deep-learning approach for 3D aortic reconstruction from orthogonal X-rays. PARNet leverages pre-training information to extract global and local features using Aortic Reconstruction with Background X-rays (ARB) module and Aortic Reconstruction with Mask X-rays (ARMask) module, respectively, thereby enhancing the model’s reconstruction performance with more aortic details. Additionally, customized loss functions are introduced to adapt to the low-density characteristics of the aorta. The results demonstrate that our method outperforms existing approaches, producing results that are visually closest to the ground truth on mainstream datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 99.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, D.M.: Mean square error of prediction as a criterion for selecting variables. Technometrics 13(3), 469–475 (1971)

    Article  Google Scholar 

  2. Anirudh, R., Kim, H., Thiagarajan, J.J., Mohan, K.A., Champley, K., Bremer, T.: Lose the views: Limited angle ct reconstruction via implicit sinogram completion. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). pp. 6343–6352 (2018)

    Google Scholar 

  3. Armato, S.G., III., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A., et al.: The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  4. Bahrami, K., Shi, F., Rekik, I., Shen, D.: Convolutional neural network for reconstruction of 7t-like images from 3t mri using appearance and anatomical features. In: Deep learning and data labeling for medical applications, pp. 39–47. Springer, Berlin, Germany (2016)

    Google Scholar 

  5. Burgos, N., et al.: Robust ct synthesis for radiotherapy planning: Application to the head and neck region. In: Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. pp. 476–484. Springer, Cham, Switzerland (2015)

    Google Scholar 

  6. Cai, Y., Wang, J., Yuille, A., Zhou, Z., Wang, A.: Structure-aware sparse-view x-ray 3d reconstruction. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR) (2024)

    Google Scholar 

  7. Chen, X., Wu, Q., Wang, S.: Research on 3d reconstruction based on multiple views. In: Proc. 13th Int. Conf. Comput. Sci. Educ. (ICCSE). pp. 1–5 (Aug 2018)

    Google Scholar 

  8. Chen, Y., Zhang, C., Chen, B., Huang, Y., Sun, Y., Wang, C., Fu, X., Dai, Y., Qin, F., Peng, Y., Gao, Y.: Accurate leukocyte detection based on deformable-detr and multi-level feature fusion for aiding diagnosis of blood diseases. Comput. Biol. Med. 170, 107917 (2024)

    Article  Google Scholar 

  9. Chung, H., Ryu, D., Mccann, M.T., Klasky, M.L., Ye, J.C.: Solving 3d inverse problems using pre-trained 2d diffusion models. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 22542–22551 (2023)

    Google Scholar 

  10. Doenst, T., Haverich, A., Serruys, P., et al.: Pci and cabg for treating stable coronary artery disease: Jacc review topic of the week. J. Am. Coll. Cardiol. 73(8), 964–976 (2019)

    Article  Google Scholar 

  11. Fan, C.M., Liu, T.J., Liu, K.H.: Compound multi-branch feature fusion for image deraindrop. In: 2023 IEEE International Conference on Image Processing (ICIP). pp. 3399–3403 (2023)

    Google Scholar 

  12. Gao, Y., Tang, H., Ge, R., Liu, J., Chen, X., Xi, Y., Ji, X., Shu, H., Zhu, J., Coatrieux, G., Coatrieux, J.L., Chen, Y.: 3dsrnet: 3-d spine reconstruction network using 2-d orthogonal x-ray images based on deep learning. IEEE Trans. Instrum. Meas. 72, 4506214 (2023)

    Article  Google Scholar 

  13. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. IEEE Trans. Inf. Theory 68(12), 8076–8091 (2022)

    Article  MathSciNet  Google Scholar 

  14. Grove, O., Berglund, A.E., Schabath, M.B., Aerts, H.J.W.L., Dekker, A., Wang, H., Velazquez, E.R., Lambin, P., Gu, Y., Balagurunathan, Y., Eikman, E., Gatenby, R.A., Eschrich, S., Gillies, R.J.: Data from: Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma (2015)

    Google Scholar 

  15. He, J., et al.: Learning hybrid representations for automatic 3d vessel centerline extraction. In: Martel, A., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Lecture Notes in Computer Science. vol. 12266. Springer, Cham (2020)

    Google Scholar 

  16. Henzler, P., Rasche, V., Ropinski, T., Ritschel, T.: Single-image tomography: 3d volumes from 2d cranial x-rays. Comput. Graph. Forum 37(2), 377–388 (2018)

    Article  Google Scholar 

  17. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of psnr in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  18. Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R.L., Shpanskaya, K., Seekins, J., Mong, D.A., Halabi, S.S., Sandberg, J.K., Jones, R., Larson, D.B., Langlotz, C.P., Patel, B.N., Lungren, M.P., Ng, A.Y.: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. CoRR abs/1901.07031 (2019)

    Google Scholar 

  19. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  20. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV). pp. 13899–13909 (Oct 2021)

    Google Scholar 

  21. Kasten, Y., Doktofsky, D., Kovler, I.: End-to-end convolutional neural network for 3d reconstruction of knee bones from bi-planar x-ray images. In: Machine Learning for Medical Image Reconstruction. pp. 123–133. Springer, Cham, Switzerland (2020)

    Google Scholar 

  22. Koehler, C., Wischgoll, T.: 3-d reconstruction of the human ribcage based on chest x-ray images and template models. IEEE Multimedia 17(3), 46–53 (2010)

    Article  Google Scholar 

  23. Kuppuswamy, R.R.: Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. J. Mater. Sci. 54(12), 8530–8545 (2019)

    Google Scholar 

  24. Lee, S., Chung, H., Park, M., Park, J., Ryu, W.S., Ye, J.C.: Improving 3d imaging with pre-trained perpendicular 2d diffusion models. 2023 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 10676–10686 (2023)

    Google Scholar 

  25. Lin, Y., Luo, Z., Zhao, W., Li, X.: Learning deep intensity field for extremely sparse-view cbct reconstruction. In: Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-Mahmood, T., Taylor, R. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, pp. 13–23. Springer Nature Switzerland, Cham (2023)

    Chapter  Google Scholar 

  26. Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. arXiv: Learning (2016)

    Google Scholar 

  27. Maton, A., Hopkins, J., McLaughlin, C.W., Johnson, S., Warner, M.Q., LaHart, D., Wright, J.D.: Human Biology Health. Prentice Hall, Englewood Cliffs, NJ, USA (1995)

    Google Scholar 

  28. Milickovic, N., Baltas, D., Giannouli, S., Lahanas, M., Zamboglou, N.: Ct imaging based digitally reconstructed radiographs and their application in brachytherapy. Physics in Medicine & Biology 45(10), 2787–2800 (2000)

    Article  Google Scholar 

  29. Müller, R., et al.: Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone 23(1), 59–66 (1998)

    Article  Google Scholar 

  30. ...Ndumele, C.E., Rangaswami, J., Chow, S.L., Neeland, I.J., Tuttle, K.R., Khan, S.S., Coresh, J., Mathew, R.O., Baker-Smith, C.M., Carnethon, M.R., Despres, J.P., Ho, J.E., Joseph, J.J., Kernan, W.N., Khera, A., Kosiborod, M.N., Lekavich, C.L., Lewis, E.F., Lo, K.B., Ozkan, B., Palaniappan, L.P., Patel, S.S., Pencina, M.J., Powell-Wiley, T.M., Sperling, L.S., Virani, S.S., Wright, J.T., Singh, R.R., Elkind, M.S.V., Assoc, A.H.: Cardiovascular-kidney-metabolic health: A presidential advisory from the american heart association. Circulation 148(20), 1606–1635 (2023)

    Article  Google Scholar 

  31. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. pp. 417–425. Springer, Cham, Switzerland (2017)

    Google Scholar 

  32. Saravi, B., Guzel, H.E., Zink, A., Ülkümen, S., Couillard-Despres, S., Wollborn, J., Lang, G., Hassel, F.: Synthetic 3d spinal vertebrae reconstruction from biplanar x-rays utilizing generative adversarial networks. J. Pers. Med. 13(12), 1642 (2023)

    Article  Google Scholar 

  33. Sekuboyina, A., et al.: VERSE: A vertebrae labelling and segmentation benchmark for multi-detector CT images. Med. Image Anal. 73, 102166 (2021)

    Article  Google Scholar 

  34. Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nature Biomed. Eng. 3(11), 880–888 (2019)

    Article  Google Scholar 

  35. Vo, C.D., Jiang, B., Azad, T.D., Crawford, N.R., Bydon, A., Theodore, N.: Robotic spine surgery: Current state in minimally invasive surgery. Global Spine Journal 10, 34–40 (2020)

    Article  Google Scholar 

  36. Wang, X., He, J., Liu, Y., Zhang, P., Cheng, W.W., Wang, B., Gui, Z.: Didr-net: a sparse-view ct deep iterative reconstruction network with an independent detail recovery network. Journal of Instrumentation 18 (2023)

    Google Scholar 

  37. Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W., Heye, T., Boll, D., Cyriac, J., Yang, S., Bach, M., Segeroth, M.: Totalsegmentator: Robust segmentation of 104 anatomic structures in ct images. Radiology: Artificial Intelligence (2023)

    Google Scholar 

  38. World Health Organization: Baseline Country Survey on Medical Devices 2010. World Health Organization (2011)

    Google Scholar 

  39. Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., Zheng, Y.: X2ct-gan: Reconstructing ct from biplanar x-rays with generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10611–10620 (2019)

    Google Scholar 

  40. Yuan, X., Liu, C., Feng, F., Zhu, Y., Wang, Y.: Slice-mask based 3d cardiac shape reconstruction from ct volume. In: Proceedings of the Asian Conference on Computer Vision (ACCV). pp. 1909–1925 (December 2022)

    Google Scholar 

  41. Zang, G., Idoughi, R., Li, R., Wonka, P., Heidrich, W.: Intratomo: Self-supervised learning-based tomography via sinogram synthesis and prediction. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 1940–1950 (2021)

    Google Scholar 

  42. Zeng, Q., Zhou, J., Ji, Y., Wang, H.: A semiparametric gaussian mixture model for chest ct-based 3d blood vessel reconstruction. Biostatistics 2024(kxae013) (April 2024)

    Google Scholar 

  43. "Zha, R., Zhang, Y., Li, H.: Naf: Neural attenuation fields for sparse-view cbct reconstruction. In: 2022 Medical Image Computing and Computer Assisted Intervention(MICCAI). pp. 442–452. Springer Nature Switzerland, Cham (2022)

    Google Scholar 

  44. Zhang, C., Liu, L., Dai, J., Liu, X., He, W., Chan, Y., Xie, Y., Chi, F., Liang, X.: Xtransct: ultra-fast volumetric ct reconstruction using two orthogonal x-ray projections for image-guided radiation therapy via a transformer network. Phys. Med. Biol. 69(085010) (2024)

    Google Scholar 

  45. Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle- and shape-consistency generative adversarial network. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition(CVPR). pp. 9242–9251 (2018)

    Google Scholar 

  46. Zhao, H., Kong, X., He, J., Qiao, Y., Dong, C.: Efficient image super-resolution using pixel attention. In: ECCV. pp. 56–72. Springer (2020)

    Google Scholar 

  47. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition(CVPR). pp. 2242–2251 (2017)

    Google Scholar 

  48. Zhu, L., Ji, D., Zhu, S., Gan, W., Wu, W., Yan, J.: Learning statistical texture for semantic segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12532–12541 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Beijing Natural Science Foundation under Grant Z220016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 195 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, C., Zhang, J., Gao, Y., Li, Z. (2025). PARNet: Aortic Reconstruction from Orthogonal X-Rays Using Pre-trained Generative Adversarial Networks. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15473. Springer, Singapore. https://doi.org/10.1007/978-981-96-0901-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0901-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0900-0

  • Online ISBN: 978-981-96-0901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics