Abstract
The three-dimensional reconstruction of the aorta plays a crucial role in assisting minimally invasive vascular interventions to treat coronary artery disease, aiding surgeons in finding the optimal procedural angles for locating and delivering intervention devices. However, existing reconstruction methods face challenges such as weak imaging capability for low-density tissues in X-rays, limiting the accurate capture and reconstruction of the aorta and other blood vessels. To address these challenges, we propose PARNet, a deep-learning approach for 3D aortic reconstruction from orthogonal X-rays. PARNet leverages pre-training information to extract global and local features using Aortic Reconstruction with Background X-rays (ARB) module and Aortic Reconstruction with Mask X-rays (ARMask) module, respectively, thereby enhancing the model’s reconstruction performance with more aortic details. Additionally, customized loss functions are introduced to adapt to the low-density characteristics of the aorta. The results demonstrate that our method outperforms existing approaches, producing results that are visually closest to the ground truth on mainstream datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, D.M.: Mean square error of prediction as a criterion for selecting variables. Technometrics 13(3), 469–475 (1971)
Anirudh, R., Kim, H., Thiagarajan, J.J., Mohan, K.A., Champley, K., Bremer, T.: Lose the views: Limited angle ct reconstruction via implicit sinogram completion. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). pp. 6343–6352 (2018)
Armato, S.G., III., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A., et al.: The lung image database consortium (lidc) and image database resource initiative (idri): a completed reference database of lung nodules on ct scans. Med. Phys. 38(2), 915–931 (2011)
Bahrami, K., Shi, F., Rekik, I., Shen, D.: Convolutional neural network for reconstruction of 7t-like images from 3t mri using appearance and anatomical features. In: Deep learning and data labeling for medical applications, pp. 39–47. Springer, Berlin, Germany (2016)
Burgos, N., et al.: Robust ct synthesis for radiotherapy planning: Application to the head and neck region. In: Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. pp. 476–484. Springer, Cham, Switzerland (2015)
Cai, Y., Wang, J., Yuille, A., Zhou, Z., Wang, A.: Structure-aware sparse-view x-ray 3d reconstruction. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR) (2024)
Chen, X., Wu, Q., Wang, S.: Research on 3d reconstruction based on multiple views. In: Proc. 13th Int. Conf. Comput. Sci. Educ. (ICCSE). pp. 1–5 (Aug 2018)
Chen, Y., Zhang, C., Chen, B., Huang, Y., Sun, Y., Wang, C., Fu, X., Dai, Y., Qin, F., Peng, Y., Gao, Y.: Accurate leukocyte detection based on deformable-detr and multi-level feature fusion for aiding diagnosis of blood diseases. Comput. Biol. Med. 170, 107917 (2024)
Chung, H., Ryu, D., Mccann, M.T., Klasky, M.L., Ye, J.C.: Solving 3d inverse problems using pre-trained 2d diffusion models. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 22542–22551 (2023)
Doenst, T., Haverich, A., Serruys, P., et al.: Pci and cabg for treating stable coronary artery disease: Jacc review topic of the week. J. Am. Coll. Cardiol. 73(8), 964–976 (2019)
Fan, C.M., Liu, T.J., Liu, K.H.: Compound multi-branch feature fusion for image deraindrop. In: 2023 IEEE International Conference on Image Processing (ICIP). pp. 3399–3403 (2023)
Gao, Y., Tang, H., Ge, R., Liu, J., Chen, X., Xi, Y., Ji, X., Shu, H., Zhu, J., Coatrieux, G., Coatrieux, J.L., Chen, Y.: 3dsrnet: 3-d spine reconstruction network using 2-d orthogonal x-ray images based on deep learning. IEEE Trans. Instrum. Meas. 72, 4506214 (2023)
Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. IEEE Trans. Inf. Theory 68(12), 8076–8091 (2022)
Grove, O., Berglund, A.E., Schabath, M.B., Aerts, H.J.W.L., Dekker, A., Wang, H., Velazquez, E.R., Lambin, P., Gu, Y., Balagurunathan, Y., Eikman, E., Gatenby, R.A., Eschrich, S., Gillies, R.J.: Data from: Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma (2015)
He, J., et al.: Learning hybrid representations for automatic 3d vessel centerline extraction. In: Martel, A., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. Lecture Notes in Computer Science. vol. 12266. Springer, Cham (2020)
Henzler, P., Rasche, V., Ropinski, T., Ritschel, T.: Single-image tomography: 3d volumes from 2d cranial x-rays. Comput. Graph. Forum 37(2), 377–388 (2018)
Huynh-Thu, Q., Ghanbari, M.: Scope of validity of psnr in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)
Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R.L., Shpanskaya, K., Seekins, J., Mong, D.A., Halabi, S.S., Sandberg, J.K., Jones, R., Larson, D.B., Langlotz, C.P., Patel, B.N., Lungren, M.P., Ng, A.Y.: Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. CoRR abs/1901.07031 (2019)
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV). pp. 13899–13909 (Oct 2021)
Kasten, Y., Doktofsky, D., Kovler, I.: End-to-end convolutional neural network for 3d reconstruction of knee bones from bi-planar x-ray images. In: Machine Learning for Medical Image Reconstruction. pp. 123–133. Springer, Cham, Switzerland (2020)
Koehler, C., Wischgoll, T.: 3-d reconstruction of the human ribcage based on chest x-ray images and template models. IEEE Multimedia 17(3), 46–53 (2010)
Kuppuswamy, R.R.: Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications. J. Mater. Sci. 54(12), 8530–8545 (2019)
Lee, S., Chung, H., Park, M., Park, J., Ryu, W.S., Ye, J.C.: Improving 3d imaging with pre-trained perpendicular 2d diffusion models. 2023 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 10676–10686 (2023)
Lin, Y., Luo, Z., Zhao, W., Li, X.: Learning deep intensity field for extremely sparse-view cbct reconstruction. In: Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-Mahmood, T., Taylor, R. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, pp. 13–23. Springer Nature Switzerland, Cham (2023)
Loshchilov, I., Hutter, F.: SGDR: Stochastic gradient descent with warm restarts. arXiv: Learning (2016)
Maton, A., Hopkins, J., McLaughlin, C.W., Johnson, S., Warner, M.Q., LaHart, D., Wright, J.D.: Human Biology Health. Prentice Hall, Englewood Cliffs, NJ, USA (1995)
Milickovic, N., Baltas, D., Giannouli, S., Lahanas, M., Zamboglou, N.: Ct imaging based digitally reconstructed radiographs and their application in brachytherapy. Physics in Medicine & Biology 45(10), 2787–2800 (2000)
Müller, R., et al.: Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and micro-computed tomography. Bone 23(1), 59–66 (1998)
...Ndumele, C.E., Rangaswami, J., Chow, S.L., Neeland, I.J., Tuttle, K.R., Khan, S.S., Coresh, J., Mathew, R.O., Baker-Smith, C.M., Carnethon, M.R., Despres, J.P., Ho, J.E., Joseph, J.J., Kernan, W.N., Khera, A., Kosiborod, M.N., Lekavich, C.L., Lewis, E.F., Lo, K.B., Ozkan, B., Palaniappan, L.P., Patel, S.S., Pencina, M.J., Powell-Wiley, T.M., Sperling, L.S., Virani, S.S., Wright, J.T., Singh, R.R., Elkind, M.S.V., Assoc, A.H.: Cardiovascular-kidney-metabolic health: A presidential advisory from the american heart association. Circulation 148(20), 1606–1635 (2023)
Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. pp. 417–425. Springer, Cham, Switzerland (2017)
Saravi, B., Guzel, H.E., Zink, A., Ülkümen, S., Couillard-Despres, S., Wollborn, J., Lang, G., Hassel, F.: Synthetic 3d spinal vertebrae reconstruction from biplanar x-rays utilizing generative adversarial networks. J. Pers. Med. 13(12), 1642 (2023)
Sekuboyina, A., et al.: VERSE: A vertebrae labelling and segmentation benchmark for multi-detector CT images. Med. Image Anal. 73, 102166 (2021)
Shen, L., Zhao, W., Xing, L.: Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nature Biomed. Eng. 3(11), 880–888 (2019)
Vo, C.D., Jiang, B., Azad, T.D., Crawford, N.R., Bydon, A., Theodore, N.: Robotic spine surgery: Current state in minimally invasive surgery. Global Spine Journal 10, 34–40 (2020)
Wang, X., He, J., Liu, Y., Zhang, P., Cheng, W.W., Wang, B., Gui, Z.: Didr-net: a sparse-view ct deep iterative reconstruction network with an independent detail recovery network. Journal of Instrumentation 18 (2023)
Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W., Heye, T., Boll, D., Cyriac, J., Yang, S., Bach, M., Segeroth, M.: Totalsegmentator: Robust segmentation of 104 anatomic structures in ct images. Radiology: Artificial Intelligence (2023)
World Health Organization: Baseline Country Survey on Medical Devices 2010. World Health Organization (2011)
Ying, X., Guo, H., Ma, K., Wu, J., Weng, Z., Zheng, Y.: X2ct-gan: Reconstructing ct from biplanar x-rays with generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10611–10620 (2019)
Yuan, X., Liu, C., Feng, F., Zhu, Y., Wang, Y.: Slice-mask based 3d cardiac shape reconstruction from ct volume. In: Proceedings of the Asian Conference on Computer Vision (ACCV). pp. 1909–1925 (December 2022)
Zang, G., Idoughi, R., Li, R., Wonka, P., Heidrich, W.: Intratomo: Self-supervised learning-based tomography via sinogram synthesis and prediction. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 1940–1950 (2021)
Zeng, Q., Zhou, J., Ji, Y., Wang, H.: A semiparametric gaussian mixture model for chest ct-based 3d blood vessel reconstruction. Biostatistics 2024(kxae013) (April 2024)
"Zha, R., Zhang, Y., Li, H.: Naf: Neural attenuation fields for sparse-view cbct reconstruction. In: 2022 Medical Image Computing and Computer Assisted Intervention(MICCAI). pp. 442–452. Springer Nature Switzerland, Cham (2022)
Zhang, C., Liu, L., Dai, J., Liu, X., He, W., Chan, Y., Xie, Y., Chi, F., Liang, X.: Xtransct: ultra-fast volumetric ct reconstruction using two orthogonal x-ray projections for image-guided radiation therapy via a transformer network. Phys. Med. Biol. 69(085010) (2024)
Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle- and shape-consistency generative adversarial network. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition(CVPR). pp. 9242–9251 (2018)
Zhao, H., Kong, X., He, J., Qiao, Y., Dong, C.: Efficient image super-resolution using pixel attention. In: ECCV. pp. 56–72. Springer (2020)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition(CVPR). pp. 2242–2251 (2017)
Zhu, L., Ji, D., Zhu, S., Gan, W., Wu, W., Yan, J.: Learning statistical texture for semantic segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 12532–12541 (2021)
Acknowledgments
This work was supported in part by Beijing Natural Science Foundation under Grant Z220016.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Cao, C., Zhang, J., Gao, Y., Li, Z. (2025). PARNet: Aortic Reconstruction from Orthogonal X-Rays Using Pre-trained Generative Adversarial Networks. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15473. Springer, Singapore. https://doi.org/10.1007/978-981-96-0901-7_1
Download citation
DOI: https://doi.org/10.1007/978-981-96-0901-7_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0900-0
Online ISBN: 978-981-96-0901-7
eBook Packages: Computer ScienceComputer Science (R0)