[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Stability and Synchronization of Neural Networks with Lévy Noise

  • Chapter
  • First Online:
Stability and Synchronization Control of Stochastic Neural Networks

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 35))

  • 1133 Accesses

Abstract

As a simple model of jump diffusions, Lévy noise is in a more general sense with respect to the description of neural noise than Brownian motion does. This chapter is concentrated on the stability and synchronization issues of neural networks with Lévy noise. Almost surely exponential stability and pth moment asymptotic stability for such networks are discussed in the first two sections. Synchronization via sampled data and adaptive synchronization are investigated in the rest two sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd edn. (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  2. D. Applebaum, M. Siakalli, Asymptotic stability of stochastic differential equations driven by Lévy noise. J. Appl. Probab. 46(4), 1116–1129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Applebaum, M. Siakalli, Stochastic stabilization of dynamical systems using Lévy noise. Stoch. Dyn. 10(4), 509–527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Ashok, B. Kosko, Stochastic resonance in continuous and spiking neuron models with Lévy noise. IEEE Trans. Neural Netw. 19(12), 1993–2008 (2008)

    Article  Google Scholar 

  5. M.O. Cáceres, The rigid rotator with Lévy noise. Phys. A 283(1–2), 140–145 (2000)

    Article  Google Scholar 

  6. J. Cao, L. Li, Cluster synchronization in an array of hybrid coupled neural networks with delay. Neural Netw. 22(4), 335–342 (2009)

    Article  Google Scholar 

  7. H.B. Fotsin, J. Daafouz, Adaptive synchronization of uncertain chaotic Colpitts oscillators based on parameter identification. Phys. Lett. A 339(3–5), 304–315 (2005)

    Article  MATH  Google Scholar 

  8. E. Fridman, A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Haykin, Neural Networks (Prentice-Hall, New Jersey, 1994)

    MATH  Google Scholar 

  10. N. Hohn, A.N. Burkitt, Shot noise in the leaky integrate-and-fire neuron. Phys. Rev. E 63(3), 031902/1–11 (2001)

    Article  Google Scholar 

  11. L. Hu, S. Gan, X. Wang, Asymptotic stability of balanced methods for stochastic jump-diffusion differential equations. J. Comput. Appl. Math. 238, 126–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Huang, Simple adaptive-feedback controller for identical chaos synchronization. Phys. Rev. E 71(3), 0372031–4 (2005)

    Google Scholar 

  13. A.F. Kohn, Dendritic transformations on random synaptic inputs as measured from a neuron’s spike train—modeling and simulation. IEEE Trans. Biomed. Eng. 36(1), 44–54 (1989)

    Article  Google Scholar 

  14. H.K. Lam, F.H.F. Leung, Design and stabilization of sampled-data neural-network-based control systems. IEEE Trans. Cybern. 36(5), 995–1005 (2006)

    Article  MathSciNet  Google Scholar 

  15. T.H. Lee, Z.-G. Wu, J.H. Park, Synchronization of a complex dynamical network with coupling time-varying delays via sampled-data control. Appl. Math. Comput. 219(3), 1354–1366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Liu, G. Yang, W. Zhang, The stability of neutral stochastic delay differential equations with Poisson jumps by fixed points. J. Comput. Appl. Math. 235(10), 3115–3120 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Liu, Z. Wang, X. Liu, An LMI approach to stability analysis of stochastic high-order Markovian jumping neural networks with mixed time delays. Nonlinear Anal.: Hybrid Syst. 2(1), 110–120 (2008)

    MathSciNet  MATH  Google Scholar 

  18. J. Lu, J. Cao, Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. Chaos 15(4), 43901–1–10 (2005)

    Google Scholar 

  19. J. Luo, Comparison principle and stability of Ito stochastic differential delay equations with Poisson jump and Markovian switching. Nonlinear Anal. 64(2), 253–262 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Mao, J. Lam, S. Xu, H. Gao, Razumikhin method and exponential stability of hybrid stochastic delay interval systems. J. Math. Anal. Appl. 314(1), 45–66 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. X. Mao, G.G. Yin, C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations. Automatica 43(2), 264–273 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Mao, C. Yuan, Stochastic Differential Equations with Markovian Switching (Imperial College Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  23. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Boston, 1989)

    Book  MATH  Google Scholar 

  24. Y. Mikheev, V. Sobolev, E. Fridman, Asymptotic analysis of digital control systems. Autom. Remote Cont. 49(9), 1175–1180 (1988)

    MathSciNet  MATH  Google Scholar 

  25. C. Ning, Y. He, M. Wu, Q. Liu, pth moment exponential stability of neutral stochastic differential equations driven by Lévy noise. J. Frankl. Inst. 349(9), 2925–2933 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. G.D. Nunno, B. Øksendal, F. Proske, White noise analysis for Lévy processes. J. Funct. Anal. 206(1), 109–148 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.H. Park, Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J. Comput. Appl. Math. 213(1), 288–293 (2008)

    Article  MATH  Google Scholar 

  28. J. Peng, Z. Liu, Stability analysis of stochastic reaction-diffusion delayed neural networks with Lévy noise. Neural Comput. Appl. 20(4), 535–541 (2011)

    Article  Google Scholar 

  29. G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance (Chapman & Hall/CRC Press, London, 1994)

    MATH  Google Scholar 

  30. L. Sheng, H. Yang, X. Lou, Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms. Chaos Solitons Fractals 40(2), 930–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Situ, Theory of Stochastic Differential Equations with Jumps and Their Applications (Springer Science Business Media, New York, 2005)

    Google Scholar 

  32. D. Tong, Q. Zhu, W. Zhou, Y. Xu, J. Fang, Adaptive synchronization for stochastic T-S fuzzy neural networks with time-delay and Markovian jumping parameters. Neurocomputing 117(6), 91–97 (2013)

    Article  Google Scholar 

  33. K. Wang, Z. Teng, H. Jiang, Adaptive synchronization of neural networks with time-varying delay and distributed delay. Phys. A: Stat. Mech. Appl. 387(2–3), 631–642 (2008)

    Article  Google Scholar 

  34. Z. Wang, Y. Liu, L. Liu, X. Liu, Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. Lett. A 356(4), 346–352 (2006)

    Article  MATH  Google Scholar 

  35. Z. Wang, Y. Liu, X. Liu, On global asymptotic stability of neural networks with discrete and distributed delays. Phys. Lett. A 345(4), 299–308 (2005)

    Article  MATH  Google Scholar 

  36. Z. Wang, H. Shu, J. Fang, X. Liu, Robust stability for stochastic Hopfield neural networks with time delays. Nonlinear Anal.: Real World Appl. 7(5), 1119–1128 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Z. Wang, Y. Wang, Y. Liu, Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays. IEEE Trans. Nerual Netw. 21(1), 11–25 (2010)

    Article  Google Scholar 

  38. I.-S. Wee, Stability for multidimensional jump-diffusion processes. Stoch. Process. Appl. 80(2), 193–209 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Z. Wu, H. Su, J. Chu, W. Zhou, Improved result on stability analysis of discrete stochastic neural networks with time delay. Phys. Lett. A 373(17), 1546–1552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Z.-G. Wu, P. Shi, H. Su, J. Chu, Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data. IEEE Trans. Cybern. 43(6), 1796–1806 (2013)

    Article  Google Scholar 

  41. F. Xi, Asymptotic properties of jump-diffusion processes with state-dependent switching. Stoch. Process. Appl. 119(7), 2198–2221 (2009)

    Article  MATH  Google Scholar 

  42. F. Xi, G. Yin, Almost sure stability and instability for switching-jump-diffusion systems with state-dependent switching. J. Math. Anal. Appl. 400(2), 460–474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. F.B. Xi, On the stability of jump-diffusions with Markovian switching. J. Math. Anal. Appl. 341(1), 588–600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Xu, X.-Y. Wang, H.-Q. Zhang, Stochastic stability for nonlinear systems driven by Lévy noise. Nonlinear Dyn. 68(1–2), 7–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Yang, J. Cao, J. Lu, Synchronization of Markovian coupled neural networks with nonidentical node-delays and random coupling strengths. IEEE Trans. Neural Netw. Learn. Syst. 23(1), 60–71 (2012)

    Article  MathSciNet  Google Scholar 

  46. Z.X. Yang, G. Yin, Stability of nonlinear regime-switching jump diffusion. Nonlinear Anal.-Theory Methods Appl. 75(9), 3854–3873 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. G. Yin, F.B. Xi, Stability of regime-switching jump diffusions. SIAM J. Control Optim. 48(7), 4525–4549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. G.G. Yin, C. Zhu, Hybrid Switching Diffusions Properties and Applications. Stochastic Modelling and Applied Probability (Springer, 2010)

    Google Scholar 

  49. W. Yu, J. Cao, Synchronization control of stochastic delayed neural networks. Phys. A: Stat. Mech. Appl. 373(1), 252–260 (2007)

    Article  Google Scholar 

  50. C. Yuan, J. Lygeros, Stabilization of a class of stochastic differential equations with Markovian switching. Syst. Control Lett. 54(9), 819–833 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. C.G. Yuan, X.R. Mao, Stability of stochastic delay hybrid systems with jumps. Eur. J. Control 16(6), 595–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. L. Zeng, B. Xu, Effects of asymmetric Lévy noise in parameter-induced aperiodic stochastic resonance. Phys. A 389(2), 5128–5136 (2010)

    Article  MathSciNet  Google Scholar 

  53. W. Zhang, Y. Tang, J. Fang, Stability of delayed neural networks with time-varying impulses. Neural Netw. 36, 59–63 (2012)

    Article  MATH  Google Scholar 

  54. W. Zhou, D. Tong, Y. Gao, C. Ji, H. Su, Mode and delay-dependent adaptive exponential synchronization in pth moment for stochastic delayed neural networks with Markovian switching. IEEE Transa. Neural Netw. Learn. Syst. 23(4), 662–668 (2012)

    Article  Google Scholar 

  55. W. Zhou, J. Yang, X. Yang, A. Dai, H. Liu, J. Fang, Almost surely exponential stability of neural networks with Lévy noise and Markovian switching. Neurocomputing 145, 154–159 (2014)

    Article  Google Scholar 

  56. W. Zhou, Q. Zhu, P. Shi, H. Su, J. Fang, L. Zhou, Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters. IEEE Trans. Cybern. 44(12), 2848–2860 (2014)

    Article  Google Scholar 

  57. Q. Zhu, J. Cao, Adaptive synchronization under almost every initial data for stochastic neural networks with time-varying delays and distributed delays. Commun. Nonlinear Sci. Numer. Simul. 16(4), 2139–2159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Q. Zhu, W. Zhou, D. Tong, J. Fang, Adaptive synchronization for stochastic neural networks of neutral-type with mixed time-delays. Neurocomputing 99(1), 477–485 (2013)

    Article  Google Scholar 

  59. Q.X. Zhu, F.B. Xi, X.D. Li, Robust exponential stability of stochastically nonlinear jump systems with mixed time delays. J. Optim. Theory Appl. 154(1), 154–174 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Y. Zhu, Q. Zhang, Z. Wei, Robust stability analysis of Markov jump standard genetic regulatory networks with mixed time delays and uncertainties. Neurocomputing 110, 44–50 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuneng Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, W., Yang, J., Zhou, L., Tong, D. (2016). Stability and Synchronization of Neural Networks with Lévy Noise. In: Stability and Synchronization Control of Stochastic Neural Networks. Studies in Systems, Decision and Control, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47833-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47833-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47832-5

  • Online ISBN: 978-3-662-47833-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics