[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Video Coding Fundamentals

  • Chapter
  • First Online:
High Efficiency Video Coding

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter provides an overview of the fundamentals of the video coding, including the tool chain, from acquisition of the video sequence via coding and transmission to display. The premier focus is on the aspects that concern the encoding and decoding process. These include the representation format of video sequences including the representation of color. The fundamental concept and the main building blocks of hybrid video coding are presented. The aim of the presentation is to provide a conceptual overview of the components and how they interact. In the following chapters, the realization of the building blocks of this scheme in HEVC will be presented and analyzed in greater detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CRT \(=\) Cathode Ray Tube

  2. 2.

    Defined in 1931 by the Commission internationale de l’éclairage (CIE), specified in ISO 11664-1 [5].

  3. 3.

    The reference electro-optical transfer function (EOTF) for flat panel displays used in HDTV production is specified in ITU-T BT.1886 [9].

  4. 4.

    Analog television started off with presentation of luminance only (black and white). By additional transmission of two chrominance signals, a backward compatible transmission of color and monochrome television signals was enabled [1].

  5. 5.

    Using \(\displaystyle {\,\mathrm {round}\left\{ v\right\} } = {\mathrm {sgn}}(v)\left\lfloor \left|v\right| + \frac{1}{2} \right\rfloor \).

  6. 6.

    If too strong quantization is applied, also relevant parts of the video signal content may be affected.

  7. 7.

    DPCM: Differential Pulse Code Modulation.

  8. 8.

    Motion estimation at the decoder side to circumvent the transmission of motion vector information has been evaluated [11], but so far has not become part of a video coding specification.

  9. 9.

    The Hadamard transform shares the base vectors with the Walsh transform. In the Walsh matrix, the base vectors are sorted according to increasing ‘frequency’, i.e. increasing number of sign changes within one base vector, which is comparable to the organization of the DCT base vectors. Omitting normalization, the Walsh transform matrix could also be derived as \(\mathbf {T}_{\mathrm {W}} = {{\mathrm{sgn}}}\left\{ \mathbf {T}_{\mathrm {DCT}} \right\} \).

  10. 10.

    During the development of HEVC, the specification of an adaptive loop filter was evaluated. This filter partitioned the picture into filtering blocks on a quadtree basis and applied adaptive filters to the partitions. In the final design, the overall trade-off between compression improvement and implementation cost was considered a too high burden and this loop filter type was not included in the HEVC specification [28].

  11. 11.

    For the HEVC Random Access configuration according to the JCT-VC common testing conditions [30], the portion of the bitstream which is not encoded with CABAC is in the range of 0.1–1.0  %.

  12. 12.

    This effect may e.g. be observed with rate-distortion optimized H.264\(\,|\,\)AVC encoding. Here, the rate-distortion optimization favours the skip mode, which is very cheap in terms of coding cost while it omits an update of the motion information according to the scene motion. Thereby, skip-coded regions in a scene may appear to ‘jump’ back and forth in successive pictures, depending on how coarse the motion approximation by the skip modes has been.

References

  1. Poynton, C.: Digital Video and HD: Algorithms and Interfaces. Morgan Kaufman Publishers, Waltham (2012)

    Google Scholar 

  2. Parameter values for ultra-high definition television systems for production and international programme exchange. ITU-R Rec, BT.2020-0. http://www.itu.int/rec/R-REC-BT.2020/en (2012). Accessed 14 Apr 2014

  3. Salmon, R., et al.: Higher Frame Rates for more Immersive Video and Television. British Broadcasting Corporation. http://www.bbc.co.uk/rd/publications/whitepaper209 (2011). Accessed 14 Apr 2014

  4. High efficiency video coding. ITU-T Rec. H.265 (HEVC). http://www.itu.int/rec/T-REC-H.265/en (2013). Accessed 14 Apr 2014

  5. Colorimetry—Part 1: CIE standard colorimetric observers. ISO 116641:2007. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=52495 (2007). Accessed 14 Apr 2014

  6. Hunt, R.G.: The Reproduction of Colour, 6th edn. Whiley-VCH, Chichester (2004)

    Book  Google Scholar 

  7. Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios. ITU-R Rec, BT.601-7. http://www.itu.int/rec/R-REC-BT.601/en (2011). Accessed 14 Apr 2014

  8. Parameter values for the HDTV standards for production and international programme exchange. ITU-R Rec, BT.709-5. http://www.itu.int/rec/R-REC-BT.709/en (2002). Accessed 14 Apr 2014

  9. Reference electro-optical transfer function for flat panel displays used in HDTV studio production. ITU-R Rec, BT.1886-0. http://www.itu.int/rec/R-REC-BT.1886/en (2011). Accessed 14 Apr 2014

  10. Ohm, J.-R.: Multimedia Communication Technology. Springer, Berlin, Heidelberg (2004)

    Book  MATH  Google Scholar 

  11. Kamp, S., Wien, M.: Decoder-side motion vector derivation for block-based video coding. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1732–1745 (2012). doi:10.1109/TCSVT.2012.2221528

  12. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  13. Jain, A.K.: A sinusoidal family of unitary transforms. IEEE Trans. Pattern Anal. Mach. Intell. 1(4), 356–365 (1979). doi:10.1109/TPAMI.1979.4766944

    Article  MATH  Google Scholar 

  14. Britanak, V., et al.: Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations. Academic Press, New York (2006)

    Google Scholar 

  15. Han, J., et al.: Towards jointly optimal spatial prediction and adaptive transform in video/image coding. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’10), pp. 726–729 (2010). doi:10.1109/ICASSP.2010.5495043

  16. Rao, K.R., Yip, P.: Discrete Cosine Transform. Academic Press, San Diego, CA (1990)

    MATH  Google Scholar 

  17. Chivukula, R.K., Reznik, Y.A.: Fast computing of discrete cosine and sine transforms of types VI and VII. In: Tescher, A.G. (ed) Applications of Digital Image Processing XXXIV, vol. 8135 (2011). SPIE, San Diego, CA. doi:10.1117/12.903685

  18. Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383 (1998). doi:10.1109/18. 720541

    Article  MathSciNet  MATH  Google Scholar 

  19. Sullivan, G.J.: Efficient scalar quantization of exponential and Laplacian random variables. IEEE Trans. Inf. Theory 42(5), 1365–1374 (1996). doi:10.1109/18.532878

    Article  MATH  Google Scholar 

  20. Reininger, R.C., Gibson, J.D.: Distributions of the two-dimensional DCT coefficients for images. IEEE Trans. Commun. 31(6), 835–839 (1983). doi:10.1109/TCOM.1983.1095893

    Article  Google Scholar 

  21. Lam, E.Y., Goodman, J.W.: A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000). doi:10.1109/83.869177

    Article  MATH  Google Scholar 

  22. IEEE Standard Specifications for the Implementations of \(8\times 8\) Inverse Discrete Cosine Transform. IEEE 1180 (1991). doi:10.1109/IEEESTD.1991.101047

  23. Information technology—MPEG video technologies—Part 1: Accuracy requirements for implementation of integer-output \(8\times 8\) inverse discrete cosine transform. ISO/IEC 23002-1:2006 (MPEG-C). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=42030 (2006). Accessed 14 Apr 2014

  24. Information technology—MPEG video technologies—Part 2: Fixed-point \(8 \times 8\) inverse discrete cosine transform and discrete cosine transform. ISO/IEC 23002-2:2008 (MPEG-C). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm? csnumber=45433 (2008). Accessed 14 Apr 2014

  25. Wien, M., et al.: Integer transforms for H.26L using adaptive block transforms. Doc. 11th meeting: ITU-T SG16/Q15 VCEG, Q15-K-24, Portland (2000)

    Google Scholar 

  26. Advanced video coding for generic audiovisual services. ITU-T Rec. H.264 (AVC). http://www.itu.int/rec/T-REC-H. 264/en (2014). Accessed 14 Apr 2014

  27. Information technology—Coding of audio-visual objects—Part 10: Advanced video coding. ISO/IEC 14496–10:2012 (AVC). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61490 (2012). Accessed 14 Apr 2014

  28. Sullivan, G.J, Ohm, J.-R.: Meeting report of the tenth meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Stockholm, SE. Doc. JCTVC-J1000. 10th Meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Stockholm, SE (2012)

    Google Scholar 

  29. Video codec for audiovisual services at \(\text{ p } \times 64\) kbit/s. ITU-T Rec. H.261. http://www.itu.int/rec/T-REC-H.261/en (1993). Accessed 14 Apr 2014

  30. Bossen, F.: Common test conditions and software reference configurations. Doc. JCTVC-K1100. 11th Meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Shanghai, CN (2012)

    Google Scholar 

  31. Sullivan, G.J., Ohm, J.-R.: Meeting report of the seventh meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Geneva, CH. Doc. JCTVC-G1100. 7th Meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Geneva, CH (2011)

    Google Scholar 

  32. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  33. Sayood, K.: Introduction to Data Compression, 3rd edn. Morgan Kaufmann Series in Multimedia Information and Systems. Morgan Kaufmann Publishers Inc., San Francisco (2005). ISBN: 012620862X

    Google Scholar 

  34. Gallager, R.G.: Variations on a theme by Huffman. IEEE Trans. Inf. Theory 24, 668–674 (1978). doi:10.1109/TIT.1978.1055959

    Article  MathSciNet  MATH  Google Scholar 

  35. Taubman, D.S., Marcellin, M.W.: JPEG2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Boston (2002)

    Google Scholar 

  36. Ugur, K., et al.: Description of video coding technology proposal by Tandberg, Nokia, Ericsson. Doc. JCTVC-A119. 1st Meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Dresden, Germany (2010)

    Google Scholar 

  37. Golomb, S.W.: Run-length encodings. IEEE Trans. Inf. Theory 12(3), 399–401 (1996). doi:10.1109/TIT.1966.1053907

  38. Weinberger, M.J., et al.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000). doi:10.1109/83.855427

    Article  Google Scholar 

  39. Teuhola, J.: A compression method for clustered bit-vectors. Inform. Process. Lett. 7(6), 308–311 (1978). doi:10.1016/0020-0190(78)90024-8

    Article  MATH  Google Scholar 

  40. Video coding for low bit rate communication. ITU-T Rec. H.263. http://www.itu.int/rec/T-REC-H.263/en (2005). Accessed 14 Apr 2014

  41. Marpe, D., et al.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans. Circ. Syst. Video Technol. 13(7), 620–637 (2003). doi:10.1109/TCSVT.2003.815173

    Article  Google Scholar 

  42. Sullivan, G.J., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 15(6), 74–90 (1998). doi:10.1109/79.733497

    Article  Google Scholar 

  43. Oppenheim, A.V., et al.: Signals and Systems, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ (1997)

    Google Scholar 

  44. Orchard, M.T., Sullivan, G.J.: Overlapped block motion compensation: an estimation-theoretic approach. IEEE Trans. Image Process. 3(5), 693–699 (1994). doi:10.1109/83.334974

    Article  Google Scholar 

  45. Malvar, H.S.: Biorthogonal and nonuniform lapped transforms for transform coding with reduced blocking and ringing artifacts. IEEE Trans. Signal Process. 46(4), 1043–1053 (1998). doi:10.1109/78.668555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Wien .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wien, M. (2015). Video Coding Fundamentals. In: High Efficiency Video Coding. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44276-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44276-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44275-3

  • Online ISBN: 978-3-662-44276-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics