Abstract
This chapter provides an overview of the fundamentals of the video coding, including the tool chain, from acquisition of the video sequence via coding and transmission to display. The premier focus is on the aspects that concern the encoding and decoding process. These include the representation format of video sequences including the representation of color. The fundamental concept and the main building blocks of hybrid video coding are presented. The aim of the presentation is to provide a conceptual overview of the components and how they interact. In the following chapters, the realization of the building blocks of this scheme in HEVC will be presented and analyzed in greater detail.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
CRT \(=\) Cathode Ray Tube
- 2.
Defined in 1931 by the Commission internationale de l’éclairage (CIE), specified in ISO 11664-1 [5].
- 3.
The reference electro-optical transfer function (EOTF) for flat panel displays used in HDTV production is specified in ITU-T BT.1886 [9].
- 4.
Analog television started off with presentation of luminance only (black and white). By additional transmission of two chrominance signals, a backward compatible transmission of color and monochrome television signals was enabled [1].
- 5.
Using \(\displaystyle {\,\mathrm {round}\left\{ v\right\} } = {\mathrm {sgn}}(v)\left\lfloor \left|v\right| + \frac{1}{2} \right\rfloor \).
- 6.
If too strong quantization is applied, also relevant parts of the video signal content may be affected.
- 7.
DPCM: Differential Pulse Code Modulation.
- 8.
Motion estimation at the decoder side to circumvent the transmission of motion vector information has been evaluated [11], but so far has not become part of a video coding specification.
- 9.
The Hadamard transform shares the base vectors with the Walsh transform. In the Walsh matrix, the base vectors are sorted according to increasing ‘frequency’, i.e. increasing number of sign changes within one base vector, which is comparable to the organization of the DCT base vectors. Omitting normalization, the Walsh transform matrix could also be derived as \(\mathbf {T}_{\mathrm {W}} = {{\mathrm{sgn}}}\left\{ \mathbf {T}_{\mathrm {DCT}} \right\} \).
- 10.
During the development of HEVC, the specification of an adaptive loop filter was evaluated. This filter partitioned the picture into filtering blocks on a quadtree basis and applied adaptive filters to the partitions. In the final design, the overall trade-off between compression improvement and implementation cost was considered a too high burden and this loop filter type was not included in the HEVC specification [28].
- 11.
For the HEVC Random Access configuration according to the JCT-VC common testing conditions [30], the portion of the bitstream which is not encoded with CABAC is in the range of 0.1–1.0 %.
- 12.
This effect may e.g. be observed with rate-distortion optimized H.264\(\,|\,\)AVC encoding. Here, the rate-distortion optimization favours the skip mode, which is very cheap in terms of coding cost while it omits an update of the motion information according to the scene motion. Thereby, skip-coded regions in a scene may appear to ‘jump’ back and forth in successive pictures, depending on how coarse the motion approximation by the skip modes has been.
References
Poynton, C.: Digital Video and HD: Algorithms and Interfaces. Morgan Kaufman Publishers, Waltham (2012)
Parameter values for ultra-high definition television systems for production and international programme exchange. ITU-R Rec, BT.2020-0. http://www.itu.int/rec/R-REC-BT.2020/en (2012). Accessed 14 Apr 2014
Salmon, R., et al.: Higher Frame Rates for more Immersive Video and Television. British Broadcasting Corporation. http://www.bbc.co.uk/rd/publications/whitepaper209 (2011). Accessed 14 Apr 2014
High efficiency video coding. ITU-T Rec. H.265 (HEVC). http://www.itu.int/rec/T-REC-H.265/en (2013). Accessed 14 Apr 2014
Colorimetry—Part 1: CIE standard colorimetric observers. ISO 116641:2007. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=52495 (2007). Accessed 14 Apr 2014
Hunt, R.G.: The Reproduction of Colour, 6th edn. Whiley-VCH, Chichester (2004)
Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios. ITU-R Rec, BT.601-7. http://www.itu.int/rec/R-REC-BT.601/en (2011). Accessed 14 Apr 2014
Parameter values for the HDTV standards for production and international programme exchange. ITU-R Rec, BT.709-5. http://www.itu.int/rec/R-REC-BT.709/en (2002). Accessed 14 Apr 2014
Reference electro-optical transfer function for flat panel displays used in HDTV studio production. ITU-R Rec, BT.1886-0. http://www.itu.int/rec/R-REC-BT.1886/en (2011). Accessed 14 Apr 2014
Ohm, J.-R.: Multimedia Communication Technology. Springer, Berlin, Heidelberg (2004)
Kamp, S., Wien, M.: Decoder-side motion vector derivation for block-based video coding. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1732–1745 (2012). doi:10.1109/TCSVT.2012.2221528
Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)
Jain, A.K.: A sinusoidal family of unitary transforms. IEEE Trans. Pattern Anal. Mach. Intell. 1(4), 356–365 (1979). doi:10.1109/TPAMI.1979.4766944
Britanak, V., et al.: Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations. Academic Press, New York (2006)
Han, J., et al.: Towards jointly optimal spatial prediction and adaptive transform in video/image coding. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’10), pp. 726–729 (2010). doi:10.1109/ICASSP.2010.5495043
Rao, K.R., Yip, P.: Discrete Cosine Transform. Academic Press, San Diego, CA (1990)
Chivukula, R.K., Reznik, Y.A.: Fast computing of discrete cosine and sine transforms of types VI and VII. In: Tescher, A.G. (ed) Applications of Digital Image Processing XXXIV, vol. 8135 (2011). SPIE, San Diego, CA. doi:10.1117/12.903685
Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theory 44(6), 2325–2383 (1998). doi:10.1109/18. 720541
Sullivan, G.J.: Efficient scalar quantization of exponential and Laplacian random variables. IEEE Trans. Inf. Theory 42(5), 1365–1374 (1996). doi:10.1109/18.532878
Reininger, R.C., Gibson, J.D.: Distributions of the two-dimensional DCT coefficients for images. IEEE Trans. Commun. 31(6), 835–839 (1983). doi:10.1109/TCOM.1983.1095893
Lam, E.Y., Goodman, J.W.: A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000). doi:10.1109/83.869177
IEEE Standard Specifications for the Implementations of \(8\times 8\) Inverse Discrete Cosine Transform. IEEE 1180 (1991). doi:10.1109/IEEESTD.1991.101047
Information technology—MPEG video technologies—Part 1: Accuracy requirements for implementation of integer-output \(8\times 8\) inverse discrete cosine transform. ISO/IEC 23002-1:2006 (MPEG-C). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=42030 (2006). Accessed 14 Apr 2014
Information technology—MPEG video technologies—Part 2: Fixed-point \(8 \times 8\) inverse discrete cosine transform and discrete cosine transform. ISO/IEC 23002-2:2008 (MPEG-C). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm? csnumber=45433 (2008). Accessed 14 Apr 2014
Wien, M., et al.: Integer transforms for H.26L using adaptive block transforms. Doc. 11th meeting: ITU-T SG16/Q15 VCEG, Q15-K-24, Portland (2000)
Advanced video coding for generic audiovisual services. ITU-T Rec. H.264 (AVC). http://www.itu.int/rec/T-REC-H. 264/en (2014). Accessed 14 Apr 2014
Information technology—Coding of audio-visual objects—Part 10: Advanced video coding. ISO/IEC 14496–10:2012 (AVC). http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61490 (2012). Accessed 14 Apr 2014
Sullivan, G.J, Ohm, J.-R.: Meeting report of the tenth meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Stockholm, SE. Doc. JCTVC-J1000. 10th Meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Stockholm, SE (2012)
Video codec for audiovisual services at \(\text{ p } \times 64\) kbit/s. ITU-T Rec. H.261. http://www.itu.int/rec/T-REC-H.261/en (1993). Accessed 14 Apr 2014
Bossen, F.: Common test conditions and software reference configurations. Doc. JCTVC-K1100. 11th Meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Shanghai, CN (2012)
Sullivan, G.J., Ohm, J.-R.: Meeting report of the seventh meeting of the Joint Collaborative Team on Video Coding (JCT-VC), Geneva, CH. Doc. JCTVC-G1100. 7th Meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Geneva, CH (2011)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
Sayood, K.: Introduction to Data Compression, 3rd edn. Morgan Kaufmann Series in Multimedia Information and Systems. Morgan Kaufmann Publishers Inc., San Francisco (2005). ISBN: 012620862X
Gallager, R.G.: Variations on a theme by Huffman. IEEE Trans. Inf. Theory 24, 668–674 (1978). doi:10.1109/TIT.1978.1055959
Taubman, D.S., Marcellin, M.W.: JPEG2000: Image Compression Fundamentals, Standards and Practice. Kluwer, Boston (2002)
Ugur, K., et al.: Description of video coding technology proposal by Tandberg, Nokia, Ericsson. Doc. JCTVC-A119. 1st Meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Dresden, Germany (2010)
Golomb, S.W.: Run-length encodings. IEEE Trans. Inf. Theory 12(3), 399–401 (1996). doi:10.1109/TIT.1966.1053907
Weinberger, M.J., et al.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000). doi:10.1109/83.855427
Teuhola, J.: A compression method for clustered bit-vectors. Inform. Process. Lett. 7(6), 308–311 (1978). doi:10.1016/0020-0190(78)90024-8
Video coding for low bit rate communication. ITU-T Rec. H.263. http://www.itu.int/rec/T-REC-H.263/en (2005). Accessed 14 Apr 2014
Marpe, D., et al.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans. Circ. Syst. Video Technol. 13(7), 620–637 (2003). doi:10.1109/TCSVT.2003.815173
Sullivan, G.J., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 15(6), 74–90 (1998). doi:10.1109/79.733497
Oppenheim, A.V., et al.: Signals and Systems, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ (1997)
Orchard, M.T., Sullivan, G.J.: Overlapped block motion compensation: an estimation-theoretic approach. IEEE Trans. Image Process. 3(5), 693–699 (1994). doi:10.1109/83.334974
Malvar, H.S.: Biorthogonal and nonuniform lapped transforms for transform coding with reduced blocking and ringing artifacts. IEEE Trans. Signal Process. 46(4), 1043–1053 (1998). doi:10.1109/78.668555
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Wien, M. (2015). Video Coding Fundamentals. In: High Efficiency Video Coding. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44276-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-662-44276-0_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44275-3
Online ISBN: 978-3-662-44276-0
eBook Packages: EngineeringEngineering (R0)