[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Precise 3D Reconstruction of Cultural Objects Using Combined Multi-component Image Matching and Active Contours Segmentation

  • Conference paper
Advances in Visual Computing (ISVC 2013)

Abstract

Cultural and creative industries constitute a large range of economic activities. Towards this expansion we need to state the inclusion of ICT technologies, as such of 3D reconstruction methods. However, precise 3D reconstruction under a computationally affordable manner is a research challenge. One way to precisely reconstruct a cultural object is through the use of photogrammetry with the main goal of finding the correspondences between two or more images to reconstruct 3D surfaces. A cultural object is often surrounded by visual background data that should be excluded to improve 3D reconstruction accuracy. Background conditions dynamically change, especially if the object is captured under outdoor conditions, where many occlusions occur and the shadows effects are not negligible. In this paper, we propose a combine image segmentation and matching method to yield an affordable 3D reconstruction of cultural objects. Image segmentation is performed on the use of active contours while image matching through novel multi-cost criteria optimization functions. Experimental results on real-life ancient column capitals indicate the efficiency of the proposed scheme both in terms of performance efficiency and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hesmondhalgh, D.: The Cultural Industries. Sage (2002)

    Google Scholar 

  2. Yan Cui, S., Schuon, D., Chan, S., Thrun, T.C.: 3D shape scanning with a time-of-flight camera. In: Computer Vision and Pattern Recognition (CVPR), pp. 1173–1180 (2010)

    Google Scholar 

  3. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P.T., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: KinectFusion: Real-time 3D Recon-struction and Interaction Using a Moving Depth Camera. In: UIST, pp. 559–568 (2011)

    Google Scholar 

  4. Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. on PAMI 31(9), 1582–1599 (2009)

    Article  Google Scholar 

  5. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  6. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(4), 401–406 (1998)

    Article  Google Scholar 

  7. Hirschmüller, H.: Stereo processing by semi-global matching and mutual information. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(2), 328–341 (2008)

    Article  Google Scholar 

  8. Stentoumis, C., Grammatikopoulos, L., Kalisperakis, I., Petsa, E., Karras, G.: A local adaptive approach for dense stereo matching in architectural scene reconstruction. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL–5/W1, pp. 219–226 (2013)

    Google Scholar 

  9. Tombari, F., Mattoccia, S., Di Stefano, L., Addimanda, E.: Classification and evaluation of cost aggregation methods for stereo correspondence. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  10. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(4), 650–656 (2006)

    Article  Google Scholar 

  11. Bobick, A.F., Intille, S.S.: Large occlusion stereo. IJCV 33(3), 181–200 (1999)

    Article  Google Scholar 

  12. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Transactions on Image Processing 16(5), 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, New Jersey (2002), Florida, R.: The Rise of the Creative Class and How It’s Transforming Work, Leisure and Everyday Life. Basic Books (2002)

    Google Scholar 

  14. Markovic, D., Gelautz, M.: Experimental Combination of Intensity and Stereo Edges for Improved Snake Segmentation. Pattern Recogn. and Image Analysis 17(1), 131–135 (2007)

    Article  Google Scholar 

  15. Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Journal on Computer Vision 43, 7–27 (2001)

    Google Scholar 

  16. Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transactions on Image Processing 10(2) (2001)

    Google Scholar 

  17. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(4), 650–656 (2006)

    Article  Google Scholar 

  18. Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal integral images. IEEE Trans. on CSVT 19(7), 1073–1079 (2009)

    Google Scholar 

  19. Stentoumis, C., Grammatikopoulos, L., Kalisperakis, I., Karras, G.: Implementing an adaptive approach for dense stereo-matching. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVIII(5), 309–314 (2012)

    Article  Google Scholar 

  20. Mei, X., Sun, X., Zhou, M., Jiao, S., Wang, H., Zhang, X.: On building an accurate stereo matching system on graphics hardware. In: Proc. ICCV Workshop on GPU in Computer Vision Applications, pp. 467–474 (2011)

    Google Scholar 

  21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. IEEE Conf. on CVPR, pp. I-511–I-518 (2001)

    Google Scholar 

  22. Yuille, A.L., Poggio, T.: A generalized ordering constraint for stereo correspondence, MIT, AI Lab., Memo 777 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stentoumis, C., Livanos, G., Doulamis, A., Protopapadakis, E., Grammatikopoulos, L., Zervakis, M. (2013). Precise 3D Reconstruction of Cultural Objects Using Combined Multi-component Image Matching and Active Contours Segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2013. Lecture Notes in Computer Science, vol 8034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41939-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41939-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41938-6

  • Online ISBN: 978-3-642-41939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics