[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

Viscous hydrodynamic flow simulations in the framework of unstructured, interface capturing, finite-volume methods have matured to an industrial standard by now. Accordingly, the prediction of maritime free-surface flows around floating bodies is a standard application for naval architects. Typical examples refer to the drag of a ship in steady calm-water conditions, a vessel’s seaway performance or tank sloshing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 175.50
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balay, S., Gropp, W., Curfman McInnes, L., Smith, B.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. Modern Software Tools in Scientific Computing, 163–202 (1997)

    Google Scholar 

  2. Chorin, A.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22(104), 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Doring, M., Andrillon, Y., Alessandrini, B., Ferrant, P.: SPH free surface flow simulation. In: 18th International Workshop on Water Waves and Floating Bodies (2003)

    Google Scholar 

  4. Ferziger, J., Perić, M.: Computational methods for fluid dynamics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  5. Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39(1), 201–225 (1981)

    Article  MATH  Google Scholar 

  6. Jasak, H., Weller, H., Gosman, A.: High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal for Numerical Methods in Fluids 31(2), 431–449 (1999)

    Article  MATH  Google Scholar 

  7. Karypis, G., Kumar, V.: A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering. Journal of Parallel and Distributed Computing 48, 71–85 (1998)

    Article  Google Scholar 

  8. Kim, W., Van, S., Kim, D.: Measurement of flows around modern commercial ship models. Exp. in Fluids 31, 567–578 (2001)

    Article  Google Scholar 

  9. Larsson, L., Stern, F., Visonneau, M.: CFD in Ship Hydrodynamics - Results of the Gothenburg 2010 Workshop. In: MARINE 2011, Computational Methods in Marine Engineering IV (2011)

    Google Scholar 

  10. Leonard, B.: The Ultimate conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering 88(1), 17–74 (1991)

    Article  MATH  Google Scholar 

  11. Martin, J., Moyce, W.: An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 244(882), 312–324 (1952)

    Article  MathSciNet  Google Scholar 

  12. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version 2.2. High Performance Computing Center Stuttgart, HLRS (2009)

    Google Scholar 

  13. Muzaferija, S., Peric, M.: Nonlinear Water Wave Interaction, pp. 59–100. WIT Press (1999)

    Google Scholar 

  14. Muzaferija, S., Peric, M., Sames, P., Schelin, T.: A two-fluid Navier-Stokes solver to simulate water entry. In: Twenty-Second Symposium on Naval Hydrodynamics (1998)

    Google Scholar 

  15. Queutey, P., Visonneau, M.: An interface capturing method for free-surface hydrodynamic flows. Computers and Fluids 36(9), 1481–1510 (2007)

    Article  MATH  Google Scholar 

  16. Rung, T., Wöckner, K., Manzke, M., Brunswig, J., Ulrich, C., Stück, A.: Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band. Schiffbautechnische Gesellschaft e.V (2009)

    Google Scholar 

  17. Salih, A., Moulic, S.: A level set formulation for the numerical simulation of impact of surge fronts. Sadhana 31(6), 697–707 (2006)

    Article  MATH  Google Scholar 

  18. Sauer, J.: Instationär kavitierende strömungen-ein neues modell, basierend auf front capturing (VOF) und blasendynamik. PhD thesis, Universität Karlsruhe (2000)

    Google Scholar 

  19. Simonsen, C., Otzen, J., Stern, F.: EFD and CFD for KCS heaving and pitching in regular head waves. In: Proc. 27th Symp. Naval Hydrodynamics (2008)

    Google Scholar 

  20. Ubbink, O.: Numerical Prediction of two fluid systems with sharp interfaces. PhD thesis, University of London (1997)

    Google Scholar 

  21. Van, S.H., Kim, K.W.J.D.H., Yim, G.T., Lee, C.J., Eom, J.Y.: Flow measurement around a 300K VLCC model. In: Annual Spring Meeting SNAK (1998)

    Google Scholar 

  22. Vaz, G., Jaouen, F., Hoekstra, M.: Free Surface Viscous Flow Computations. Validation of URANS Code FreSCo. In: Proceedings of OMAE 2009, Honolulu, Hawaii, USA (2009)

    Google Scholar 

  23. Wackers, J., Koren, B., Raven, H., van der Ploeg, A., Starke, A., Deng, G., Queutey, P., Visonneau, M., Hino, T., Ohashi, K.: Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics. Archives of Computational Methods in Engineering 18(1), 1–41 (2011)

    Article  MathSciNet  Google Scholar 

  24. Wilcox, D.C.: Turbulence Modelling for CFD, 2nd edn. DCW Industries Inc. (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Manzke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manzke, M., Voss, JP., Rung, T. (2013). Sub-cycling Strategies for Maritime Two-Phase Flow Simulations. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33221-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33221-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33220-3

  • Online ISBN: 978-3-642-33221-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics