[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

α-Visibility

  • Conference paper
Algorithm Theory – SWAT 2012 (SWAT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7357))

Included in the following conference series:

  • 1138 Accesses

Abstract

We study a new class of visibility problems based on the notion of α-visibility. Given an angle α and a collection of line segments \(\ensuremath{{\cal S}}\) in the plane, a segment t is said to be α-visible from a point p, if there exists an empty triangle with one vertex at p and the side opposite to p on t such that the angle at p is α. In this model of visibility, we study the classical variants of point visibility, weak and complete segment visibility, and the construction of the visibility graph. We also investigate the natural query versions of these problems, when α is either fixed or specified at query time.

Research supported by NSERC, HPCVL and SUN Microsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aronov, B., Guibas, L., Teichmann, M., Zhang, L.: Visibility queries and maintenance in simple polygons. Discrete Comput. Geom. 27(4), 461–483 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica 1(1), 49–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asano, T., Ghosh, S., Shermer, T.: Visibility in Plane in the Handbook in Computational Geometry. Elsevier Science (1999)

    Google Scholar 

  4. Bose, P., Lubiw, A., Munro, J.: Efficient visibility queries in simple polygons. In: Proc. 4th Canadian Conf. Comput. Geom., pp. 23–28 (1992)

    Google Scholar 

  5. Brunn, H.: Über Kerneigebiete. Math. Ann. 73, 436–440 (1913)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.M.: Optimal partition trees. In: Proceedings of the 2010 Annual Symposium on Computational Geometry, SoCG 2010, pp. 1–10. ACM, N.Y. (2010)

    Chapter  Google Scholar 

  7. ElGindy, H.A., Avis, D.: A linear algorithm for computing the visibility polygon from a point. J. Algorithms 2(2), 186–197 (1981)

    Article  MathSciNet  Google Scholar 

  8. Ghosh, S.: Visibility Algorithms in the Plane. Cambridge University Press (2007)

    Google Scholar 

  9. Ghosh, S., Mount, D.: An output-sensitive algorithm for computing visibility. SIAM J. Comput. 20, 888–910 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gudmundsson, J., Morin, P.: Planar visibility: testing and counting. In: Proceedings of the 2010 Annual Symposium on Computational Geometry. ACM (2010)

    Google Scholar 

  11. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guibas, L., Motwani, R., Raghavan, P.: The robot localization problem. SIAM J. Comput. 26(4), 1120–1138 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heffernan, P., Mitchell, J.: An optimal algorithm for computing visibility in the plane. SIAM J. Comput. 24(1), 184–201 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keil, M., Mount, D., Wismath, S.: Visibility stabs and depth-first spiralling on line segments in output sensitive time. Int. J. Comput. Geometry Appl. 10(5), 535–552 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, D.: Visibility of a simple polygon. Computer Vision, Graphics, and Image Processing 22(2), 207–221 (1983)

    Article  MATH  Google Scholar 

  16. Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete & Computational Geometry 10, 157–182 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Melissaratos, E., Souvaine, D.: Shortest paths help solve geometric optimization problems in planar regions. SIAM Jl. Computing 21(4), 601–638 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Munro, J., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31, 762–776 (2002)

    Article  MathSciNet  Google Scholar 

  19. Nouri, M., Zarei, A., Ghodsi, M.: Weak Visibility of Two Objects in Planar Polygonal Scenes. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705, pp. 68–81. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Pocchiola, M., Vegter, G.: The visibility complex. Int. J. Comput. Geometry Appl. 6(3), 279–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Souvaine, D.: Computational geometry in a curved world (algorithm). PhD thesis. Princeton University, Princeton (1986), AAI8629439

    Google Scholar 

  22. Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility polygons with holes. In: Proceedings of the 1986 Annual Symposium on Computational Geometry, pp. 14–23 (1986)

    Google Scholar 

  23. Vegter, G.: The Visibility Diagram: A Data Structure for Visibility Problems and Motion Planning. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 97–110. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  24. Zarei, A., Ghodsi, M.: Query point visibility computation in polygons with holes. Comput. Geom. Theory Appl. 39, 78–90 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghodsi, M., Maheshwari, A., Nouri, M., Sack, JR., Zarrabi-Zadeh, H. (2012). α-Visibility. In: Fomin, F.V., Kaski, P. (eds) Algorithm Theory – SWAT 2012. SWAT 2012. Lecture Notes in Computer Science, vol 7357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31155-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31155-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31154-3

  • Online ISBN: 978-3-642-31155-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics