[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Unsupervised Cell Nuclei Segmentation Based on Morphology and Adaptive Active Contour Modelling

  • Conference paper
Image Analysis and Recognition (ICIAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7950))

Included in the following conference series:

Abstract

This paper proposes an unsupervised segmentation scheme for cell nuclei. This method computes the cell nuclei by using adaptive active contour modelling which is driven by the morphology method. Firstly, morphology is used to enhance the gray level values of cell nuclei. Then binary cell nuclei is acquired by using an image subtraction technique. Secondly, the masks of cell nuclei are utilized to drive an adaptive region-based active contour modelling to segment the cell nuclei. In addition, an artificial interactive segmentation method is used to generate the ground truth of cell nuclei. This method can have an interest in several applications covering different kinds of cell nuclei. Experiments show that the proposed method can generate accurate segmentation results compared with alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survay of thresholding techniques. Computer Vision, Graphics, and Image Processing 41(2), 233–260 (1988)

    Article  Google Scholar 

  2. Lee, K.M., Street, W.N.: An adaptive resource-allocating network for automatic detection, segmentation, and classification of breast cancer nuclei topic area: image processing and recognition. IEEE Transaction on Neural Network 14(3), 680–687 (2003)

    Article  Google Scholar 

  3. Ruberto, C.D., Dempster, A., Kan, S., Jarra, B.: Analysis of infected blood cell images using morphological operators. Image and Vision Computing 20, 133–146 (2002)

    Article  Google Scholar 

  4. Hu, M., Ping, X., Ding, Y.: Automated cell nucleus segmentation using improved snake. In: Proceedings of the International Conference on Image Processing, pp. 2737–2740 (2004)

    Google Scholar 

  5. Gurcan, M.N., Pan, T., Shimada, H., Saltz, J.: Image analysis for neuroblastoma classification: segmentation of cell nuclei. In: Proceedings of the 28th IEEE EMBS Annual International Conference, pp. 4844–4847 (2006)

    Google Scholar 

  6. Yang, F., Mackey, M.A., Ianzini, F., Gallardo, G., Sonka, M.: Cell segmentation, tracking, and mitosis detection using temporal context. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 302–309. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Zhang, B., Zimmer, C., Olivo, M.J.C.: Tracking fluorescent cells with coupled geometric active contours. In: Proceedings of the IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 476–479 (2004)

    Google Scholar 

  8. Yang, L., Meer, P., Foran, D.J.: Unsupervised segmentation based on robust estimation and color active contour models. IEEE Transactions on Information Technology in Biomedicine 9(3), 475–486 (2005)

    Article  Google Scholar 

  9. Li, C., Kao, C., John, C., Ding, Z.: Minimization of Region-Scalable Fitting Energy for Image Segmentation. IEEE Transactions on Image Processing 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  10. Yang, Y., Li, C., Kao, C.-Y., Osher, S.: Split bregman method for minimization of region-scalable fitting energy for image segmentation. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammound, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part II. LNCS, vol. 6454, pp. 117–128. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Goldstein, T., Bresson, X., Osher, S.: Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction. Journal of Scientific Computing 45, 272–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haralick, R., Sternberg, S., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(4), 532–550 (1987)

    Article  Google Scholar 

  13. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of denoising and segmentation models. SIAM Journal on Applied Mathematics 66, 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast Global Minimization of the Active Contour/Snake Model. Journal of Mathematical Imaging and Vision 28, 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  15. Robb, R.: Biomedical imaging, visualization, and analysis. Wiley-Liss, USA (2000)

    Google Scholar 

  16. Adobe photoshop, http://en.wikipedia.org/wiki/Adobe_Photoshop

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, Z., Strange, H., Han, C., Zwiggelaar, R. (2013). Unsupervised Cell Nuclei Segmentation Based on Morphology and Adaptive Active Contour Modelling. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2013. Lecture Notes in Computer Science, vol 7950. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39094-4_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39094-4_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39093-7

  • Online ISBN: 978-3-642-39094-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics