[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Energy Efficiency in W-Grid Data-Centric Sensor Networks via Workload Balancing

  • Conference paper
Web Technologies and Applications (APWeb 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7808))

Included in the following conference series:

  • 4619 Accesses

Abstract

Wireless sensor networks are usually composed by small units able to sense and transmit to a sink elementary data which are then processed by an external machine. However, recent improvements in the memory and computational power of sensors, together with the reduction of energy consumption, are rapidly changing the potential of such systems, moving the attention towards data-centric sensor networks. In this kind of networks, nodes are smart enough either to store some data and to perform basic processing allowing the network itself to supply higher level information closer to the network user expectations. In other words, sensors no longer transmit each elementary data sensed, rather they cooperate in order to assemble them in more complex and synthetic information, which will be locally stored and transmitted according to queries and/or events defined by users and external applications. Recently, we proposed W-Grid, a fully decentralized cross-layer infrastructure for self-organizing data-centric sensor networks where wireless communication occur through multi-hop routing among devices. In this paper, we show that network traffic, and thus the energy consumption, can be balanced among sensors by assigning multiple virtual coordinates to nodes trough a fully decentralized workload balancing algorithm, which extends W-Grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cerroni, W., Moro, G., Pirini, T., Ramilli, M.: Peer-to-peer data mining classifiers for decentralized detection of network attacks. In: Wang, H., Zhang, R. (eds.) ADC 2013, Adelaide, South Australia. CRPIT, pp. 1–8. ACS (2013)

    Google Scholar 

  2. Cuzzocrea, A.: CAMS: OLAPing multidimensional data streams efficiently. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 48–62. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Cuzzocrea, A.: Retrieving accurate estimates to OLAP queries over uncertain and imprecise multidimensional data streams. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 575–576. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Cuzzocrea, A., Chakravarthy, S.: Event-based lossy compression for effective and efficient OLAP over data streams. Data Knowl. Eng. 69(7), 678–708 (2010)

    Article  Google Scholar 

  5. Cuzzocrea, A., Furfaro, F., Greco, S., Masciari, E., Mazzeo, G.M., Saccà, D.: A distributed system for answering range queries on sensor network data. In: PerCom Workshops, pp. 369–373 (2005)

    Google Scholar 

  6. Cuzzocrea, A., Furfaro, F., Mazzeo, G.M., Saccá, D.: A grid framework for approximate aggregate query answering on summarized sensor network readings. In: Meersman, R., Tari, Z., Corsaro, A. (eds.) OTM Workshops 2004. LNCS, vol. 3292, pp. 144–153. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Cuzzocrea, A., Furfaro, F., Saccà, D.: Enabling OLAP in mobile environments via intelligent data cube compression techniques. J. Intell. Inf. Syst. 33(2), 95–143 (2009)

    Article  Google Scholar 

  8. El-Moukaddem, F., Torng, E., Xing, G.: Mobile relay configuration in data-intensive wireless sensor networks. IEEE Trans. Mob. Comput. 12(2), 261–273 (2013)

    Article  Google Scholar 

  9. Greenstein, B., Estrin, D., Govindan, R., Ratnasamy, S., Shenker, S.: Difs: A distributed index for features in sensor networks. In: Proceedings of First IEEE WSNA, pp. 163–173. IEEE Computer Society (2003)

    Google Scholar 

  10. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1), 2–16 (2003)

    Article  Google Scholar 

  11. Karp, B., Kung, H.: GPRS: greedy perimeter stateless routing for wireless networks. In: MobiCom 2000, pp. 243–254. ACM Press (2000)

    Google Scholar 

  12. Li, X., Kim, Y., Govindan, R., Hong, W.: Multi-dimensional range queries in sensor networks. In: SenSys 2003, pp. 63–75. ACM Press, New York (2003)

    Google Scholar 

  13. Li, Z., Liu, Y., Li, M., Wang, J., Cao, Z.: Exploiting ubiquitous data collection for mobile users in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(2), 312–326 (2013)

    Article  Google Scholar 

  14. Liu, B., Dousse, O., Nain, P., Towsley, D.: Dynamic coverage of mobile sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(2), 301–311 (2013)

    Article  Google Scholar 

  15. Monti, G., Moro, G., Sartori, C.: WR-Grid: A scalable cross-layer infrastructure for routing, multi-dimensional data management and replication in wireless sensor networks. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA 2006 Ws. LNCS, vol. 4331, pp. 377–386. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Moro, G., Monti, G.: W-Grid: a self-organizing infrastructure for multi-dimensional querying and routing in wireless ad-hoc networks. In: IEEE P2P 2006 (2006)

    Google Scholar 

  17. Moro, G., Monti, G.: W-grid: A scalable and efficient self-organizing infrastructure for multi-dimensional data management, querying and routing in wireless data-centric sensor networks. Journal of Network and Computer Applications 35(4), 1218–1234 (2012), http://dx.doi.org/10.1016/j.jnca.2011.05.002

    Article  Google Scholar 

  18. Ouksel, A.M., Moro, G.: G-Grid: A class of scalable and self-organizing data structures for multi-dimensional querying and content routing in P2P networks. In: Moro, G., Sartori, C., Singh, M.P. (eds.) AP2PC 2003. LNCS (LNAI), vol. 2872, pp. 123–137. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Ratnasamy, S., Karp, B., Shenker, S., Estrin, D., Govindan, R., Yin, L., Yu, F.: Data-centric storage in sensornets with ght, a geographic hash table. Mob. Netw. Appl. 8(4), 427–442 (2003)

    Article  Google Scholar 

  20. Xiao, L., Ouksel, A.: Tolerance of localization imprecision in efficiently managing mobile sensor databases. In: ACM MobiDE 2005, pp. 25–32. ACM Press, New York (2005)

    Google Scholar 

  21. Ye, F., Luo, H., Cheng, J., Lu, S., Zhang, L.: A two-tier data dissemination model for large-scale wireless sensor networks. In: MobiCom 2002, pp. 148–159. ACM Press, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuzzocrea, A., Moro, G., Sartori, C. (2013). Energy Efficiency in W-Grid Data-Centric Sensor Networks via Workload Balancing. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds) Web Technologies and Applications. APWeb 2013. Lecture Notes in Computer Science, vol 7808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37401-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37401-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37400-5

  • Online ISBN: 978-3-642-37401-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics