[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Online PLCA for Real-Time Semi-supervised Source Separation

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

Non-negative spectrogram factorization algorithms such as probabilistic latent component analysis (PLCA) have been shown to be quite powerful for source separation. When training data for all of the sources are available, it is trivial to learn their dictionaries beforehand and perform supervised source separation in an online fashion. However, in many real-world scenarios (e.g. speech denoising), training data for one of the sources can be hard to obtain beforehand (e.g. speech). In these cases, we need to perform semi-supervised source separation and learn a dictionary for that source during the separation process. Existing semi-supervised separation approaches are generally offline, i.e. they need to access the entire mixture when updating the dictionary. In this paper, we propose an online approach to adaptively learn this dictionary and separate the mixture over time. This enables us to perform online semi-supervised separation for real-time applications. We demonstrate this approach on real-time speech denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smaragdis, P., Raj, B., Shashanka, M.: Supervised and Semi-Supervised Separation of Sounds from Single-Channel Mixtures. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 414–421. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online Learning for Matrix Factorization and Sparse Coding. J. Machine Learning Research 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Wang, F., Tan, C., König, A.C., Li, P.: Efficient Document Clustering via Online Nonnegative Matrix Factorizations. In: SDM (2011)

    Google Scholar 

  4. Lefèvre, A., Bach, F., Févotte, C.: Online Algorithms for Nonnegative Matrix Factorization with the Itakura-Saito Divergence. In: WASPAA (2011)

    Google Scholar 

  5. Vincent, E., Fevotte, C., Gribonval, R.: Performance Measurement in Blind Audio Source Separation. IEEE Trans. on Audio Speech Lang. Process. 14(4), 1462–1469 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duan, Z., Mysore, G.J., Smaragdis, P. (2012). Online PLCA for Real-Time Semi-supervised Source Separation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics