Abstract
In this contribution, new online EM algorithms are proposed to perform inference in general hidden Markov models. These algorithms update the parameter at some deterministic times and use Sequential Monte Carlo methods to compute approximations of filtering distributions. Their convergence properties are addressed in [9] and [10]. In this paper, the performance of these algorithms are highlighted in the challenging framework of Simultaneous Localization and Mapping.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3562–3568 (2006)
Burgard, W., Fox, D., Thrun, S.: Probabilistic robotics. MIT Press, Cambridge (2005)
Cappé, O.: Online EM algorithm for Hidden Markov Models. To Appear in J. Comput. Graph. Statist. (2011)
Cappé, O., Moulines, E.: Online Expectation Maximization Algorithm for Latent Data Models. J. Roy. Statist. Soc. B, 593–613 (2009)
Del Moral, P., Doucet, A., Singh, S.S.: Forward smoothing using sequential Monte Carlo. arXiv:1012.5390v1 (2011)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B, 1–38 (1977)
Julier, S.J., Uhlmann, J.K.: A counter example to the theory of simultaneous localization and map building. In: IEEE International Conference on Robotics and Automation, pp. 4238–4243 (2001)
Le Corff, S., Fort, G., Moulines, E.: Online EM algorithm to solve the SLAM problem. In: IEEE Workshop on Statistical Signal Processing (2011)
Le Corff, S., Fort, G.: Online Expectation Maximization based algorithms for inference in Hidden Markov Models. arXiv:1108.3968 (2011)
Le Corff, S., Fort, G.: Convergence of a particle-based approximation of the Block Online Expectation Maximization algorithm. arXiv:1111.1307 (2011)
Le Gland, F., Mevel, L.: Recursive estimation in HMMs. In: IEEE Conference on Decision and Control, pp. 3468–3473 (1997)
Martinez-Cantin, R.: Active map learning for robots: insights into statistical consistency. PhD thesis (2008)
Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In: IJCAI (2003)
Titterington, D.M.: Recursive parameter estimation using incomplete data. J. Roy. Statist. Soc. B, 257–267 (1984)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Le Corff, S., Fort, G., Moulines, E. (2012). New Online EM Algorithms for General Hidden Markov Models. Application to the SLAM Problem. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-28551-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28550-9
Online ISBN: 978-3-642-28551-6
eBook Packages: Computer ScienceComputer Science (R0)