[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

New Online EM Algorithms for General Hidden Markov Models. Application to the SLAM Problem

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

In this contribution, new online EM algorithms are proposed to perform inference in general hidden Markov models. These algorithms update the parameter at some deterministic times and use Sequential Monte Carlo methods to compute approximations of filtering distributions. Their convergence properties are addressed in [9] and [10]. In this paper, the performance of these algorithms are highlighted in the challenging framework of Simultaneous Localization and Mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3562–3568 (2006)

    Google Scholar 

  2. Burgard, W., Fox, D., Thrun, S.: Probabilistic robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  3. Cappé, O.: Online EM algorithm for Hidden Markov Models. To Appear in J. Comput. Graph. Statist. (2011)

    Google Scholar 

  4. Cappé, O., Moulines, E.: Online Expectation Maximization Algorithm for Latent Data Models. J. Roy. Statist. Soc. B, 593–613 (2009)

    Google Scholar 

  5. Del Moral, P., Doucet, A., Singh, S.S.: Forward smoothing using sequential Monte Carlo. arXiv:1012.5390v1 (2011)

    Google Scholar 

  6. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B, 1–38 (1977)

    Google Scholar 

  7. Julier, S.J., Uhlmann, J.K.: A counter example to the theory of simultaneous localization and map building. In: IEEE International Conference on Robotics and Automation, pp. 4238–4243 (2001)

    Google Scholar 

  8. Le Corff, S., Fort, G., Moulines, E.: Online EM algorithm to solve the SLAM problem. In: IEEE Workshop on Statistical Signal Processing (2011)

    Google Scholar 

  9. Le Corff, S., Fort, G.: Online Expectation Maximization based algorithms for inference in Hidden Markov Models. arXiv:1108.3968 (2011)

    Google Scholar 

  10. Le Corff, S., Fort, G.: Convergence of a particle-based approximation of the Block Online Expectation Maximization algorithm. arXiv:1111.1307 (2011)

    Google Scholar 

  11. Le Gland, F., Mevel, L.: Recursive estimation in HMMs. In: IEEE Conference on Decision and Control, pp. 3468–3473 (1997)

    Google Scholar 

  12. Martinez-Cantin, R.: Active map learning for robots: insights into statistical consistency. PhD thesis (2008)

    Google Scholar 

  13. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In: IJCAI (2003)

    Google Scholar 

  14. Titterington, D.M.: Recursive parameter estimation using incomplete data. J. Roy. Statist. Soc. B, 257–267 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le Corff, S., Fort, G., Moulines, E. (2012). New Online EM Algorithms for General Hidden Markov Models. Application to the SLAM Problem. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics